
Kyran Dale

Data
Visualization
with Python
& JavaScript
SCRAPE, CLEAN, EXPLORE & TRANSFORM YOUR DATA

Kyran Dale

Data Visualization with
Python and JavaScript

Scrape, Clean, Explore &
Transform Your Data

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-92051-0

[LSI]

Data Visualization with Python and JavaScript
by Kyran Dale

Copyright © 2016 Kyran Dale. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editors: Dawn Schanafelt and
Meghan Blanchette
Production Editor: Kristen Brown
Copyeditor: Gillian McGarvey
Proofreader: Rachel Monaghan

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

July 2016: First Edition

Revision History for the First Edition
2016-06-29: First Release
2017-03-17: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491920510 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Data Visualiza‐
tion with Python and JavaScript, the cover image, and related trade dress are trade‐
marks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491920510

Table of Contents

Preface. ix

Introduction. xv

1. Development Setup. 1
The Accompanying Code 1
Python 1
JavaScript 5
Databases 6
Integrated Development Environments 7
Summary 8

Part I. Basic Toolkit

2. A Language-Learning Bridge Between Python and JavaScript. . . 11
Similarities and Differences 12
Interacting with the Code 13
Basic Bridge Work 16
Differences in Practice 40
A Cheat Sheet 51
Summary 54

3. Reading and Writing Data with Python. 57
Easy Does It 57
Passing Data Around 58
Working with System Files 59

iii

CSV, TSV, and Row-Column Data Formats 60
JSON 63
SQL 67
MongoDB 77
Dealing with Dates, Times, and Complex Data 82
Summary 84

4. Webdev 101. 85
The Big Picture 85
Single-Page Apps 86
Tooling Up 86
Building a Web Page 91
Chrome’s Developer Tools 100
A Basic Page with Placeholders 103
Scalable Vector Graphics 107
Summary 122

Part II. Getting Your Data

5. Getting Data off the Web with Python. 127
Getting Web Data with the requests Library 127
Getting Data Files with requests 128
Using Python to Consume Data from a Web API 132
Using Libraries to Access Web APIs 138
Scraping Data 143
Getting the Soup 146
Selecting Tags 147
Summary 156

6. Heavyweight Scraping with Scrapy. 157
Setting Up Scrapy 159
Establishing the Targets 160
Targeting HTML with Xpaths 161
A First Scrapy Spider 167
Scraping the Individual Biography Pages 173
Chaining Requests and Yielding Data 176
Scrapy Pipelines 181
Scraping Text and Images with a Pipeline 183
Summary 190

iv | Table of Contents

Part III. Cleaning and Exploring Data with Pandas

7. Introduction to NumPy. 193
The NumPy Array 194
Creating Array Functions 200
Summary 202

8. Introduction to Pandas. 203
Why Pandas Is Tailor-Made for Dataviz 203
Why Pandas Was Developed 203
Heterogeneous Data and Categorizing Measurements 204
The DataFrame 206
Creating and Saving DataFrames 210
Series into DataFrames 218
Panels 221
Summary 222

9. Cleaning Data with Pandas. 223
Coming Clean About Dirty Data 223
Inspecting the Data 225
Indices and Pandas Data Selection 229
Cleaning the Data 233
The Full clean_data Function 250
Saving the Cleaned Dataset 251
Summary 253

10. Visualizing Data with Matplotlib. 255
Pyplot and Object-Oriented Matplotlib 255
Starting an Interactive Session 256
Interactive Plotting with Pyplot’s Global State 257
Figures and Object-Oriented Matplotlib 263
Plot Types 267
Seaborn 276
Summary 284

11. Exploring Data with Pandas. 285
Starting to Explore 286
Plotting with Pandas 288
Gender Disparities 289
National Trends 296
Age and Life Expectancy of Winners 308

Table of Contents | v

The Nobel Diaspora 315
Summary 317

Part IV. Delivering the Data

12. Delivering the Data. 321
Serving the Data 322
Delivering Static Files 327
Dynamic Data with Flask 332
Using Static or Dynamic Delivery 336
Summary 336

13. RESTful Data with Flask. 339
A RESTful, MongoDB API with Eve 340
Delivering Data to the Nobel Prize Visualization 348
RESTful SQL with Flask-Restless 353
Summary 357

Part V. Visualizing Your Data with D3

14. Imagining a Nobel Visualization. 361
Who Is It For? 361
Choosing Visual Elements 362
Menu Bar 363
Prizes by Year 364
A Map Showing Selected Nobel Countries 365
A Bar Chart Showing Number of Winners by Country 367
A List of the Selected Winners 367
The Complete Visualization 369
Summary 370

15. Building a Visualization. 371
Preliminaries 372
The HTML Skeleton 374
CSS Styling 378
The JavaScript Engine 382
Running the Nobel Prize Visualization App 396
Summary 397

vi | Table of Contents

16. Introducing D3—The Story of a Bar Chart. 399
Framing the Problem 400
Working with Selections 400
Adding DOM Elements 404
Leveraging D3 410
Measuring Up with D3’s Scales 410
Unleashing the Power of D3 with Data Binding 415
The enter Method 417
Accessing the Bound Data 421
The Update Pattern 422
Axes and Labels 427
Transitions 434
Summary 438

17. Visualizing Individual Prizes. 439
Building the Framework 439
Scales 440
Axes 441
Category Labels 442
Nesting the Data 444
Adding the Winners with a Nested Data-Join 446
A Little Transitional Sparkle 450
Summary 453

18. Mapping with D3. 455
Available Maps 456
D3’s Mapping Data Formats 457
D3 Geo, Projections, and Paths 461
Putting the Elements Together 467
Updating the Map 471
Adding Value Indicators 474
Our Completed Map 477
Building a Simple Tooltip 478
Summary 481

19. Visualizing Individual Winners. 483
Building the List 484
Building the Bio-Box 487
Summary 490

Table of Contents | vii

20. The Menu Bar. 493
Creating HTML Elements with D3 494
Building the Menu Bar 494
Summary 504

21. Conclusion. 505
Recap 505
Future Progress 508
Final Thoughts 511

A. Moving from Development to Production. 513

Index. 535

viii | Table of Contents

Preface

The chief ambition of this book is to describe a data visualization
(dataviz) toolchain that, in the era of the Internet, is starting to pre‐
dominate. The guiding principle of this toolchain is that whatever
insightful nuggets you have managed to mine from your data
deserve a home on the web browser. Being on the Web means you
can easily choose to distribute your dataviz to a select few (using
authentication or restricting to a local network) or the whole world.
This is the big idea of the Internet and one that dataviz is embracing
at a rapid pace. And that means that the future of dataviz involves
JavaScript, the only first-class language of the web browser. But Java‐
Script does not yet have the data-processing stack needed to refine
raw data, which means data visualization is inevitably a multi-
language affair. I hope this book provides ammunition for my belief
that Python is the natural complementary language to JavaScript’s
monopoly of browser visualizations.

Although this book is a big one (that fact is felt most keenly by the
author right now), it has had to be very selective, leaving out a lot of
very cool Python and JavaScript dataviz tools and focusing on the
ones I think provide the best building blocks. The number of cool
libraries I couldn’t cover reflects the enormous vitality of the Python
and JavaScript data science ecosystems. Even while the book was
being written, brilliant new Python and JavaScript libraries were
being introduced, and the pace continues.

I wanted to give the book some narrative structure by setting a data
transformation challenge. All data visualization is essentially trans‐
formative, and showing the journey from one reflection of a dataset
(HTML tables and lists) to a more modern, engaging, interactive,

ix

and, fundamentally, browser-based one seemed a good way to intro‐
duce key data visualization tools in a working context. The challenge
I set was to transform a basic Wikipedia list of Nobel Prize winners
into a modern, interactive, browser-based visualization. Thus the
same dataset is presented in a more accessible, engaging form. But
while the creation of the Nobel visualization lent the book a back‐
bone, there were calculated redundancies. For example, although the
book uses Flask and the MongoDB-based Python-EVE API to
deliver the Nobel data to the browser, I also show how to do it with
the SQL-based Flask-RESTless. If you work in the field of dataviz,
you will need to be able to engage with both SQL and NoSQL data‐
bases, and this book aims to be impartial. Not every library demon‐
strated was used in transforming the Nobel dataset, but all are ones I
have found most useful personally and think you will, too.

So the book is a collection of tools forming a chain, with the cre‐
ation of the Nobel visualization providing a guiding narrative. You
should be able to dip into relevant chapters when and if the need
arises; the different parts of the book are self-contained so you can
quickly review what you’ve learned when required.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names, data‐
bases, datatypes, environment variables, statements, and
keywords.

Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.

x | Preface

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available
for download at https://github.com/Kyrand/dataviz-with-python-and-
js.

This book is here to help you get your job done. In general, if exam‐
ple code is offered with this book, you may use it in your programs
and documentation. You do not need to contact us for permission
unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usu‐
ally includes the title, author, publisher, and ISBN. For example:
“Data Visualization with Python and JavaScript by Kyran Dale
(O’Reilly). Copyright 2016 Kyran Dale, 978-1-491-92051-0.”

If you feel your use of code examples falls outside fair use or the per‐
mission given above, feel free to contact us at permis‐
sions@oreilly.com.

Preface | xi

https://github.com/Kyrand/dataviz-with-python-and-js
https://github.com/Kyrand/dataviz-with-python-and-js
mailto:permissions@oreilly.com
mailto:permissions@oreilly.com

O’Reilly Safari
Safari (formerly Safari Books Online) is a
membership-based training and reference
platform for enterprise, government, educa‐
tors, and individuals.

Members have access to thousands of books, training videos, Learn‐
ing Paths, interactive tutorials, and curated playlists from over 250
publishers, including O’Reilly Media, Harvard Business Review,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft
Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks,
Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, and Course Technology, among oth‐
ers.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
and any additional information. You can access this page at http://
bit.ly/dataVisualization_PyJS.

To comment or ask technical questions about this book, send email
to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

xii | Preface

http://oreilly.com/safari
http://oreilly.com/safari
http://bit.ly/dataVisualization_PyJS
http://bit.ly/dataVisualization_PyJS
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Thanks first to Meghan Blanchette, who set the ball rolling and
steered that ball through its first very rough chapters. Dawn Schana‐
felt then took the helm and did the bulk of the very necessary edit‐
ing. Kristen Brown did a brilliant job taking the book through
production, aided by Gillian McGarvey’s impressively tenacious
copy editing. Working with such talented, dedicated professionals
has been an honor and a privilege—and an education: the book
would have been so much easier to write if I’d known then what I
know now. Isn’t that always the way?

Many thanks to Amy Zielinski for making the author look better
than he deserves.

The book benefited from some very helpful feedback. So much
thanks to Christophe Viau, Tom Parslow, Peter Cook, Ian Macinnes,
and Ian Ozsvald.

I’d also like to thank the valiant bug hunters who answered my
appeal during Early Release. At time of writing, these are Douglas
Kelley, Pavel Suk, Brigham Hausman, Marco Hemken, Noble Ken‐
namer, Manfredi Biasutti, Matthew Maldonado, and Geert Bauwens.

Preface | xiii

http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Introduction

This book aims to get you up to speed with what is, in my opinion,
the most powerful data visualization stack going: Python and Java‐
Script. You’ll learn enough about big libraries like Pandas and D3 to
start crafting your own web data visualizations and refining your
own toolchain. Expertise will come with practice, but this book
presents a shallow learning curve to basic competence.

If you’re reading this, I’d love to hear any
feedback you have. Please post it to pyjsdata‐
viz@kyrandale.com. Thanks a lot.
You’ll also find a working copy of the Nobel vis‐
ualization the book literally and figuratively
builds toward at http://kyrandale.com/static/pyjs
dataviz/index.html.

The bulk of this book tells one of the innumerable tales of data visu‐
alization, one carefully selected to showcase some powerful Python
and JavaScript libraries and tools which together form a toolchain.
This toolchain gathers raw, unrefined data at its start and delivers a
rich, engaging web visualization at its end. Like all tales of data visu‐
alization, it is a tale of transformation—in this case, transforming a
basic Wikipedia list of Nobel Prize winners into an interactive visu‐
alization, bringing the data to life and making exploration of the
prize’s history easy and fun.

A primary motivation for writing the book is the belief that, what‐
ever data you have and whatever story you want to tell with it, the
natural home for the visualizations you transform it into is the Web.
As a delivery platform, it is orders of magnitude more powerful than

xv

mailto:pyjsdataviz@kyrandale.com
mailto:pyjsdataviz@kyrandale.com
http://kyrandale.com/static/pyjsdataviz/index.html
http://kyrandale.com/static/pyjsdataviz/index.html

what came before, and this book aims to smooth the passage from
desktop- or server-based data analysis and processing to getting the
fruits of that labor out on the Web.

But the most ambitious aim of this book is to persuade you that
working with these two powerful languages toward the goal of deliv‐
ering powerful web visualizations is actually fun and engaging.

I think many potential dataviz programmers assume there is a big
divide between web development and doing what they would like to
do, which is program in Python and JavaScript. Web development
involves loads of arcane knowledge about markup languages, style
scripts, and administration, and can’t be done without tools with
strange names like Gulp or Yeoman. I aim to show that, these days,
that big divide can be collapsed to a thin and very permeable mem‐
brane, allowing you to focus on what you do well: programming
stuff (see Figure P-1) with minimal effort, relegating the web servers
to data delivery.

Figure P-1. Here be webdev dragons

Who This Book Is For
First off, this book is for anyone with a reasonable grasp of Python
or JavaScript who wants to explore one of the most exciting areas in
the data-processing ecosystem right now: the exploding field of data
visualization for the Web. It’s also about addressing some specific
pain points that in my experience are quite common.

xvi | Introduction

1 See here for a fairly jaw-dropping comparison.

When you get commissioned to write a technical book, chances are
your editor will sensibly caution you to think in terms of pain points
that your book could address. The two key pain points of this book
are best illustrated by way of a couple of stories, including one of my
own and one that has been told to me in various guises by JavaScrip‐
ters I know.

Many years ago, as an academic researcher, I came across Python
and fell in love. I had been writing some fairly complex simulations
in C++, and Python’s simplicity and power was a breath of fresh air
from all the boilerplate Makefiles, declarations, definitions, and the
like. Programming became fun. Python was the perfect glue, playing
nicely with my C++ libraries (Python wasn’t then and still isn’t a
speed demon) and doing, with consummate ease, all the stuff that is
such a pain in low-level languages (e.g., file I/O, database access, and
serialization). I started to write all my graphical user interfaces
(GUIs) and visualizations in Python, using wxPython, PyQt, and a
whole load of other refreshingly easy toolsets. Unfortunately,
although I think some of these tools are pretty cool and would love
to share them with the world, the effort required to package them,
distribute them, and make sure they still work with modern libraries
represents a hurdle I’m unlikely to ever overcome.

At the time, there existed what in theory was the perfect universal
distribution system for the software I’d so lovingly crafted—namely,
the web browser. Web browsers were (and are) available on pretty
much every computer on Earth, with their own built-in, interpreted
programming language: write once, run everywhere. But Python
didn’t play in the web browser’s sandpit and browsers were incapa‐
ble of ambitious graphics and visualizations, being pretty much
limited to static images and the odd jQuery transformation. Java‐
Script was a “toy” language tied to a very slow interpreter that was
good for little DOM tricks but certainly nothing approaching what I
could do on the desktop with Python. So that route was discounted,
out of hand. My visualizations wanted to be on the Web, but there
was no route through.

Fast forward a decade or so and, thanks to an arms race initiated by
Google and their V8 engine, JavaScript is now orders of magnitude
faster; in fact, it’s now an awful lot faster than Python.1 HTML has

Introduction | xvii

http://bit.ly/291UVme
https://jQuery.com/
https://en.wikipedia.org/wiki/Document_Object_Model

also tidied up its act a bit, in the guise of HTML5. It’s a lot nicer to
work with, with much less boilerplate code. What were loosely fol‐
lowed and distinctly shaky protocols like Scalable Vector Graphics
(SVG) have firmed up nicely, thanks to powerful visualization libra‐
ries, D3 in particular. Modern browsers are obliged to work nicely
with SVG and, increasingly, 3D in the form of WebGL and its chil‐
dren such as THREE.js. The visualizations I was doing in Python are
now possible on your local web browser, and the payoff is that, with
very little effort, they can be made accessible to every desktop, lap‐
top, smartphone, and tablet in the world.

So why aren’t Pythonistas flocking to get their data out there in a
form they dictate? After all, the alternative to crafting it yourself is
leaving it to somebody else, something most data scientists I know
would find far from ideal. Well, first there’s that term web develop‐
ment, connoting complicated markup, opaque stylesheets, a whole
slew of new tools to learn, IDEs to master. And then there’s Java‐
Script itself, a strange language, thought of as little more than a toy
until recently and having something of the neither fish nor fowl to
it. I aim to take those pain points head-on and show that you can
craft modern web visualizations (often single-page apps) with a very
minimal amount of HTML and CSS boilerplate, allowing you to
focus on the programming, and that JavaScript is an easy leap for
the Pythonista. But you don’t have to leap; Chapter 2 is a language
bridge that aims to help Pythonistas and JavaScripters bridge the
divide between the languages by highlighting common elements and
providing simple translations.

The second story is a common one among JavaScript data visualiz‐
ers I know. Processing data in JavaScript is far from ideal. There are
few heavyweight libraries, and although recent functional enhance‐
ments to the language make data munging much more pleasant,
there’s still no real data-processing ecosystem to speak of. So there’s a
distinct asymmetry between the hugely powerful visualization libra‐
ries available (D3, as ever, is the paramount library), and the ability
to clean and process any data delivered to the browser. All of this
mandates doing your data cleaning, processing, and exploring in
another language or with a toolkit like Tableau, and this often
devolves into piecemeal forays into vaguely remembered Matlab, the
steepish learning curve that is R, or a Java library or two.

Toolkits like Tableau, although very impressive, are often, in my
experience, ultimately frustrating for programmers. There’s no way

xviii | Introduction

http://www.tableau.com/

to replicate in a GUI the expressive power of a good, general-
purpose programming language. Plus, what if you want to create a
little web server to deliver your processed data? That means learning
at least one new web-development-capable language.

In other words, JavaScripters starting to stretch their data visualiza‐
tion are looking for a complementary data-processing stack that
requires the least investment of time and has the shallowest learning
curve.

Minimal Requirements to Use This Book
I always feel reluctant to place restrictions on people’s explorations,
particularly in the context of programming and the Web, which is
chock-full of autodidacts (how else would one learn with the halls of
academia being light years behind the trends?), learning fast and
furiously, gloriously uninhibited by the formal constraints that used
to apply to learning. Python and JavaScript are pretty much as sim‐
ple as it gets, programming-language-wise, and are both top candi‐
dates for best first language. There isn’t a huge cognitive load in
interpreting the code.

In that spirit, there are expert programmers who, without any expe‐
rience of Python and JavaScript, could consume this book and be
writing custom libraries within a week. These are also the people
most likely to ignore anything I write here, so good luck to you peo‐
ple if you decide to make the effort.

For beginner programmers, fresh to Python or JavaScript, this book
is probably too advanced for you, and I recommend taking advan‐
tage of the plethora of books, web resources, screencasts, and the
like that make learning so easy these days. Focus on a personal itch,
a problem you want to solve, and learn to program by doing—it’s
the only way.

For people who have programmed a bit in either Python or Java‐
Script, my advised threshold to entry is that you have used a few
libraries together, understand the basic idioms of your language, and
can look at a piece of novel code and generally get a hook on what’s
going on—in other words, Pythonistas who can use a few modules
of the standard library, and JavaScripters who can not only use
JQuery but understand some of its source code.

Introduction | xix

Why Python and JavaScript?
Why JavaScript is an easy question to answer. For now and the fore‐
seeable future, there is only one first class, browser-based program‐
ming language. There have been various attempts to extend,
augment, and usurp, but good old, plain-vanilla JS is still preemi‐
nent. If you want to craft modern, dynamic, interactive visualiza‐
tions and, at the touch of a button, deliver them to the world, at
some point you are going to run into JavaScript. You might not need
to be a Zen master, but basic competence is a fundamental price of
entry into one of the most exciting areas of modern data science.
This book hopes to get you into the ballpark.

Why Not Python on the Browser?
There are currently some very impressive initiatives aimed at ena‐
bling Python-produced visualizations, often built on Matplotlib, to
run in the browser. They achieve this by converting the Python code
into JavaScript based on the canvas or svg drawing contexts. The
most popular and mature of these are Bokeh and the recently open-
sourced Plotly. While these are both brilliant initiatives, I feel that in
order to do web-based dataviz, you have to bite the JavaScript bullet
to exploit the increasing potential of the medium. That’s why, along
with space constraints, I’m not covering the Python-to-JavaScript
dataviz converters.

While there is some brilliant coding behind these JavaScript con‐
verters and many solid use cases, they do have big limitations:

• Automated code conversion may well do the job, but the code
produced is usually pretty impenetrable for a human being.

• Adapting and customizing the resulting plots using the power‐
ful browser-based JavaScript development environment is likely
to be very painful.

• You are limited to the subset of plot types currently available in
the libraries.

• Interactivity is very basic at the moment. Stitching this together
is better done in JavaScript, using the browser’s developer tools.

Bear in mind that the people building these libraries have to be Java‐
Script experts, so if you want to understand anything of what they’re

xx | Introduction

http://matplotlib.org/
http://bokeh.pydata.org/en/latest/
https://plot.ly

doing and eventually express yourself, then you’ll have to get up to
scratch with some JavaScript.

My basic take-home message regarding Python-to-JavaScript con‐
version is that it has its place but would only be generally justified if
JavaScript were 10 times harder to program than it is. The fiddly,
iterative process of creating a modern browser-based data visualiza‐
tion is hard enough using a first-class language without having to
negotiate an indirect journey through a second-class one.

Why Python for Data Processing
Why you should choose Python for your data-processing needs is a
little more involved. For a start, there are good alternatives as far as
data processing is concerned. Let’s deal with a few candidates for the
job, starting with the enterprise behemoth Java.

Java
Among the other main, general-purpose programming languages,
only Java offers anything like the rich ecosystem of libraries that
Python does, with considerably more native speed too. But while
Java is a lot easier to program in than languages like C++, it isn’t, in
my opinion, a particularly nice language to program in, having
rather too much in the way of tedious boilerplate code and excessive
verbiage. This sort of thing starts to weigh heavily after a while and
makes for a hard slog at the code face. As for speed, Python’s default
interpreter is slow, but Python is a great glue language that plays
nicely with other languages. This ability is demonstrated by the big
Python data-processing libraries like NumPy (and its dependent,
Pandas), Scipy, and the like, which use C++ and Fortran libraries to
do the heavy lifting while providing the ease of use of a simple,
scripting language.

R
The venerable R has, until recently, been the tool of choice for many
data scientists and is probably Python’s main competitor in the
space. Like Python, R benefits from a very active community, some
great tools like the plotting library ggplot, and a syntax specially
crafted for data science and statistics. But this specialism is a double-
edged sword. Because R was developed for a specific purpose, it
means that if, for example, you wish to write a web server to serve

Introduction | xxi

your R-processed data, you have to skip out to another language
with all the attendant learning overheads, or try to hack something
together in a round-hole/square-peg sort of way. Python’s general-
purpose nature and its rich ecosystem mean one can do pretty much
everything required of a data-processing pipeline (JS visuals aside)
without having to leave its comfort zone. Personally, it is a small sac‐
rifice to pay for a little syntactic clunkiness.

Others
There are other alternatives to doing your data processing with
Python, but none of them come close to the flexibility and power
afforded by a general-purpose, easy-to-use programming language
with a rich ecosystem of libraries. While, for example, mathematical
programming environments such as Matlab and Mathematica have
active communities and a plethora of great libraries, they hardly
count as general purpose, because they are designed to be used
within a closed garden. They are also proprietary, which means a
significant initial investment and a different vibe to Python’s
resoundingly open source environment.

GUI-driven dataviz tools like Tableau are great creations but will
quickly frustrate someone used to the freedom to programming.
They tend to work great as long as you are singing from their song‐
sheet, as it were. Deviations from the designated path get painful
very quickly.

Python’s Getting Better All the Time
As things stand, I think a very good case can be made for Python
being the budding data scientist’s language of choice. But things are
not standing still; in fact, Python’s capabilities in this area are grow‐
ing at an astonishing rate. To put it in perspective, I have been pro‐
gramming in Python for over 15 years and have grown used to
being surprised if I can’t find a Python module to help solve a prob‐
lem at hand, but I find myself surprised at the growth of Python’s
data-processing abilities, with a new, powerful library appearing
weekly. To give an example, Python has traditionally been weak on
statistical analysis libraries, with R being far ahead. Recently a num‐
ber of powerful modules, such as StatsModel, have started to close
this gap fast.

xxii | Introduction

http://www.tableau.com/

So Python is a thriving data-processing ecosystem with pretty much
unmatched general purpose, and it’s getting better week by week. It’s
understandable why so many in the community are in a state of such
excitement—it’s pretty exhilarating.

As far as visualization in the browser, the good news is that there’s
more to JavaScript than its privileged, nay, exclusive place in the web
ecosystem. Thanks to an interpreter arms race that has seen perfor‐
mance increase in staggering leaps and bounds and some powerful
visualization libraries such as D3, which would complement any
language out there, JavaScript now has serious chops.

In short, Python and JavaScript are a wonderful complement for
data visualization on the Web, each needing the other to provide a
vital missing component.

What You’ll Learn
There are some big Python and JavaScript libraries in our dataviz
toolchain, and comprehensive coverage of them all would require a
number of books. Nevertheless, I think that the fundamentals of
most libraries, and certainly the ones covered here, can be grasped
fairly quickly. Expertise takes time and practice but the basic knowl‐
edge needed to be productive is, so to speak, low-hanging fruit.

In that sense, this book aims to give you a solid backbone of practi‐
cal knowledge, strong enough to take the weight of future develop‐
ment. I aim to make the learning curve as shallow as possible and
get you over the initial climb with the practical skills needed to start
refining your art.

This book emphasizes pragmatism and best practice. It’s going to
cover a fair amount of ground, and there isn’t enough space for too
many theoretical diversions. I will aim to cover those aspects of the
libraries in the toolchain that are most commonly used, and point
you to resources for the other stuff. Most libraries have a hard core
of functions, methods, classes, and the like that are the chief, func‐
tional subset. With these at your disposal, you can actually do stuff.
Eventually, you’ll find an itch you can’t scratch with those, at which
time good books, documentation, and online forums will be your
friend.

Introduction | xxiii

The Choice of Libraries
I had three things in mind while choosing the libraries used in the
book.

1. Open source and free as in beer—you shouldn’t have to invest
any extra money to learn with this book.

2. Longevity—generally well-established, community-driven, and
popular.

3. Best of breed (assuming good support and an active commu‐
nity), at the sweet spot between popularity and utility.

The skills you learn here should be relevant for a long time. Gener‐
ally, the obvious candidates have been chosen—libraries that write
their own ticket, as it were. Where appropriate, I will highlight the
alternative choices and give a rationale for my selection.

Preliminaries
A few preliminary chapters are needed before beginning the trans‐
formative journey of our Nobel dataset through the toolchain. These
cover the basic skills necessary to make the rest of the toolchain
chapters run more fluidly. The first few chapters cover the following:

Chapter 2
Building a language bridge between Python and JavaScript

Chapter 3
How to pass around data with Python, through various file for‐
mats and databases

Chapter 4
Covering the basic web development needed by the book

These chapters are part tutorial, part reference, and it’s fine to skip
straight to the beginning of the toolchain, dipping back where
needed.

xxiv | Introduction

http://www.howtogeek.com/howto/31717/what-do-the-phrases-free-speech-vs.-free-beer-really-mean/

The Dataviz Toolchain
The main part of the book demonstrates the data-visualization tool‐
chain, which follows the journey of a dataset of Nobel Prize winners
from raw, freshly scraped data to engaging, interactive JavaScript
visualization. During the collection process, the refinement and
transformation of a number of big libraries are demonstrated, sum‐
marized in Figure P-2. These libraries are the industrial lathes of our
toolchain: rich, mature tools that demonstrate the power of the
Python+JavaScript dataviz stack. The following sections contain a
brief introduction to the five stages of our toolchain and their major
libraries.

Figure P-2. The dataviz toolchain

1. Scraping Data with Scrapy
The first challenge for any data visualizer is getting hold of the data
they need, whether by request or to scratch a personal itch. If you’re
very lucky, this will be delivered to you in pristine form, but more
often than not you have to go find it. I’ll cover the various ways you
can use Python to get data off the Web (e.g., web APIs or Google

Introduction | xxv

2 Web scraping is a computer software technique to extract information from websites,
usually involving getting and parsing web pages.

3 Scrapy’s controllers are called spiders.

spreadsheets). The Nobel Prize dataset for the toolchain demonstra‐
tion is scraped from its Wikipedia pages using Scrapy.2

Python’s Scrapy is an industrial-strength scraper that does all the
data throttling and media pipelining, which are indispensable if you
plan on scraping significant amounts of data. Scraping is often the
only way to get the data you are interested in, and once you’ve mas‐
tered Scrapy’s workflow, all those previously off-limits datasets are
only a spider away.3

2. Cleaning Data with Pandas
The dirty secret of dataviz is that pretty much all data is dirty, and
turning it into something you can use may well occupy a lot more
time than anticipated. This is an unglamorous process that can
easily steal over half your time, which is all the more reason to get
good at it and use the right tools.

Pandas is a huge player in the Python data-processing ecosystem. It’s
a Python data-analysis library whose chief component is the Data
Frame, essentially a programmatic spreadsheet. Pandas extends
NumPy, Python’s powerful numeric library, into the realm of hetero‐
geneous datasets, the kind of categorical, temporal, and ordinal
information that data visualizers have to deal with. As well as being
great for interactively exploring your data (using its built-in Mat‐
plotlib plots), Pandas is well suited to the drudge-work of cleaning
data, making it easy to locate duplicate records, fix dodgy date-
strings, find missing fields, and so on.

3. Exploring Data with Pandas and Matplotlib
Before beginning the transformation of your data into a visualiza‐
tion, you need to understand it. The patterns, trends, and anomalies
hidden in the data will inform the stories you are trying to tell with
it, whether that’s explaining a recent rise in year-by-year widget sales
or demonstrating global climate change.

In conjunction with IPython, the Python interpreter on steroids,
Pandas and Matplotlib (with additions such as Seaborn) provide a

xxvi | Introduction

https://en.wikipedia.org/wiki/Web_scraping

4 The scientific Python library, part of the NumPy ecosystem.
5 REST is short for Representational State Transfer, the dominant style for HTTP-based

web APIs and much recommended.

great way to explore your data interactively, generating rich, inline
plots from the command line, slicing and dicing your data to reveal
interesting patterns. The results of these explorations can then be
easily saved to file or database to be passed on to your JavaScript
visualization.

4. Delivering Your Data with Flask
Once you’ve explored and refined your data, you’ll need to serve it
to the web browser, where a JavaScript library like D3 can transform
it. One of the great strengths of using a general-purpose language
like Python is that it’s as comfortable rolling a web server in a few
lines of code as it is crunching through large datasets with special-
purpose libraries like NumPy and Scipy.4 Flask is Python’s most pop‐
ular lightweight server and is perfect for creating small, RESTful5

APIs that can be used by JavaScript to get data from the server, in
files or databases, to the browser. As I’ll demonstrate, you can roll a
RESTful API in a few lines of code, capable of delivering data from
SQL or NoSQL databases.

5. Transforming Data into Interactive Visualizations
with D3
Once the data is cleaned and refined, we have the visualization
phase, where selected reflections of the dataset are presented, ideally
allowing the user to explore them interactively. Depending on the
data, this might involve bar charts, maps, or novel visualizations.

D3 is JavaScript’s powerhouse visualization library, arguably one of
the most powerful visualization tools irrespective of language. We’ll
use D3 to create a novel Nobel Prize visualization with multiple ele‐
ments and user interaction, allowing people to explore the dataset
for items of interest. D3 can be challenging to learn, but I hope to
bring you quickly up to speed and ready to start honing your skills
in the doing.

Introduction | xxvii

Smaller Libraries
In addition to the big libraries covered, there is a large supporting
cast of smaller libraries. These are the indispensable smaller tools,
the hammers and spanners of the toolchain. Python in particular
has an incredibly rich ecosystem, with small, specialized libraries for
almost every conceivable job. Among the strong supporting cast,
some particularly deserving of mention are:

requests

Python’s go-to HTTP library, fully deserving its motto “HTTP
for humans.” requests is far superior to urllib2, one of Python’s
included batteries.

SQLAlchemy

The best Python SQL toolkit and object-relational mapper
(ORM) there is. It’s feature rich and makes working with the
various SQL-based databases a relative breeze.

Seaborn

A great addition to Python’s plotting powerhouse Matplotlib,
adding some very useful plot types including some statistical
ones of particular use to data visualizers. It also adds arguably
superior aesthetics, overriding the Matplotlib defaults.

crossfilter

Even though JavaScript’s data-processing libraries are a work in
progress, a few really useful ones have emerged recently, with
crossfilter being a stand-out. It enables very fast filtering of
row-columnar datasets and is ideally suited to dataviz work,
which is unsurprising because one of its creators is Mike
Bostock, the father of D3.

Using the Book
Although the book’s different parts follow a process of data transfor‐
mation, this book doesn’t need to be read cover to cover. The first
part provides a basic toolkit for Python- and JavaScript-based web
dataviz and will inevitably have content that is familiar to many
readers. Cherry-pick for the stuff you don’t know and dip back as
required (there will be link backs further on, as required). The lan‐
guage learning bridge between Python and JavaScript will be unnec‐

xxviii | Introduction

essary for those seasoned in both languages, although there may still
be some useful nuggets.

The remaining parts of the book, following our toolchain as it trans‐
forms a fairly uninspiring web list into a fully fledged, interactive D3
visualization, are essentially self-contained. If you want to dive
immediately into Part III and some data cleaning and exploration
with Pandas, go right ahead, but be aware that it assumes the exis‐
tence of a dirty Nobel Prize dataset. You can see how that was pro‐
duced by Scrapy later if that fits your schedule. Equally, if you want
to dive straight into creating the Nobel-viz app in parts Part IV and
Part V, be aware that they assume a clean Nobel Prize dataset.

Whatever route you take, I suggest eventually aiming to acquire all
the basic skills covered in the book if you intend to make dataviz
your profession.

A Little Bit of Context
This is a practical book and assumes that the reader has a pretty
good idea of what he or she wants to visualize and how that visuali‐
zation should look and feel, as well as a desire to get cracking on it,
unencumbered by too much theory. Nevertheless, drawing on the
history of data visualization can both clarify the central themes of
the book and add valuable context. It can also help explain why now
is such an exciting time to be entering the field, as technological
innovation is driving novel dataviz forms, and people are grappling
with the problem of presenting the increasing amount of multidi‐
mensional data generated by the Internet.

Data visualization has an impressive body of theory behind it and
there are some great books out there that I recommend you read
(see “Recommended Books” on page xxxii for a little selection). The
practical benefit of understanding the way humans visually harvest
information cannot be overstated. It can be easily demonstrated, for
example, that a pie chart is almost always a bad way of presenting
comparative data and a simple bar chart is far preferable. By con‐
ducting psychometric experiments, we now have a pretty good idea
of how to trick the human visual system and make relationships in
the data harder to grasp. Conversely, we can show that some visual
forms are close to optimal for amplifying contrast. The literature, at
its very least, provides some useful rules of thumb that suggest good
candidates for any particular data narrative.

Introduction | xxix

6 William Playfair’s Statistical Breviary of 1801 having the dubious distinction of origi‐
nating the pie chart.

In essence, good dataviz tries to present data, collected from meas‐
urements in the world (empirical) or as the product of abstract
mathematical explorations (e.g., the beautiful fractal patterns of the
Mandlebrot set), in such a way as to draw out or emphasize any pat‐
terns or trends that might exist. These patterns can be simple (e.g.,
average weight by country), or the product of sophisticated statisti‐
cal analysis (e.g., data clustering in a higher dimensional space).

In its untransformed state, we can imagine this data floating as a
nebulous cloud of numbers or categories. Any patterns or correla‐
tions are entirely obscure. It’s easy to forget but the humble spread‐
sheet (Figure P-3 a) is a data visualization—the ordering of data into
row-columnar form an attempt to tame it, make its manipulation
easier, and highlight discrepancies (e.g., actuarial bookkeeping). Of
course, most people are not adept at spotting patterns in rows of
numbers so more accessible, visual forms were developed to engage
with our visual cortex, the prime human conduit for information
about the world. Enter the bar chart, pie chart,6 and line chart. More
imaginative ways were employed to distill statistical data in a more
accessible form, one of the most famous being Charles Joseph Min‐
ard’s visualization of Napoleon’s disastrous Russian campaign of
1812 (Figure P-3 b).

The tan-colored stream in Figure P-3 b shows the advance of Napo‐
leon’s army on Moscow; the black line shows the retreat. The thick‐
ness of the stream represents the size of Napoleon’s army, thinning
as casualties mounted. A temperature chart below is used to indicate
the temperature at locations along the way. Note the elegant way in
which Minard has combined multidimensional data (casualty statis‐
tics, geographical location, and temperature) to give an impression
of the carnage, which would be hard to grasp in any other way
(imagine trying to jump from a chart of casualties to a list of loca‐
tions and make the necessary connections). I would argue that the
chief problem of modern interactive dataviz is exactly the same as
that faced by Minard: how to move beyond conventional one-
dimensional bar charts (perfectly good for many things) and
develop new ways to communicate cross-dimensional patterns
effectively.

xxx | Introduction

https://en.wikipedia.org/wiki/Mandelbrot_set

Figure P-3. (a) An early spreadsheet and (b) Joseph Minard’s visualiza‐
tion of Napoleon’s Russian campaign of 1812

Until quite recently, most of our experience of charts was not much
different from those of Charles Minard’s audience. They were pre-
rendered and inert, and showed one reflection of the data, hopefully
an important and insightful one but nevertheless under total control
of the author. In this sense, the replacement of real ink points with
computer screen pixels was only a change in the scale of
distribution.

The leap to the Internet just replaced newsprint with pixels, the vis‐
ualization still being unclickable and static. Recently, the combina‐
tion of some powerful visualization libraries (D3 being preeminent
among them) and a massive improvement in JavaScript’s perfor‐
mance have opened the way to a new type of visualization, one that
is easily accessible and dynamic, and actually encourages explora‐
tion and discovery. The clear distinction between data exploration
and presentation is blurred. This new type of data visualization is

Introduction | xxxi

the focus of this book and the reason why dataviz for the Web is
such an exciting area right now. People are trying to create new ways
to visualize data and make it more accessible/useful to the end user.
This is nothing short of a revolution.

Summary
Dataviz on the Web is an exciting place to be right now with innova‐
tions in interactive visualizations coming thick and fast, and many
(if not most) of them being developed with D3. JavaScript is the only
browser-based language, so the cool visuals are by necessity being
coded in it (or converted into it). But JavaScript lacks the tools or
environment necessary for the less dramatic but just as vital element
of modern dataviz: the aggregation, curation, and processing of the
data. This is where Python rules the roost, providing a general-
purpose, concise, and eminently readable programming language
with access to an increasing stable of first-class data-processing
tools. Many of these tools leverage the power of very fast, low-level
libraries, making Python data processing fast as well as easy.

This book introduces some of those heavyweight tools, as well as a
host of other smaller but equally vital tools. It also shows how
Python and JavaScript in concert represent the best dataviz stack out
there for anyone wishing to deliver their visualizations to the
Internet.

Up next is the first part of the book, covering the preliminary skills
needed for the toolchain. You can work through it now or skip
ahead to Part II and the start of the toolchain, referring back when
needed.

Recommended Books
Here are a few key data-visualization books to whet your appetite,
covering the gamut from interactive dashboards to beautiful and
insightful infographics.

• Tufte, Edward. The Visual Display of Quantitative Information.
Graphics Press, 1983.

• Ware, Colin. Information Visualization: Perception for Design.
Morgan Kaufmann, 2004.

xxxii | Introduction

• Rosenberg, Daniel. Cartographies of Time: A History of the Time‐
line. Princeton Architectural Press, 2012.

• Few, Stephen. Information Dashboard Design: Displaying Data
for at-a-glance Monitoring. Analytics Press, 2013.

• Cairo, Alberto. The Functional Art. New Riders, 2012.
• Bertin, Jacques. Semiology of Graphics: Diagrams, Networks,

Maps. Esri Press, 2010.

Introduction | xxxiii

CHAPTER 1

Development Setup

This chapter covers the downloads and software installations
needed to use this book, and sketches out a recommended develop‐
ment environment. As you’ll see, this isn’t as onerous as it might
once have been. I’ll cover Python and JavaScript dependencies sepa‐
rately and give a brief overview of cross-language IDEs.

The Accompanying Code
There’s a GitHub repository for the bulk of the code covered in this
book, including the full Nobel Prize visualization. To get hold of it,
just perform a git clone to a suitable local directory:

$ git clone https://github.com/Kyrand/
 dataviz-with-python-and-js.git

This should create a local dataviz-with-python-and-js directory with
the key source code covered by the book.

Python
The bulk of the libraries covered in the book are Python-based, but
what might have been a challenging attempt to provide comprehen‐
sive installation instructions for the various operating systems and
their quirks is made much easier by the existence of Continuum
Analytics’ Anaconda, a Python platform that bundles together most
of the popular analytics libraries in a convenient package.

1

https://git-scm.com/docs/git-clone
https://www.continuum.io/
https://www.continuum.io/

1 There are a number of pretty reliable automatic converters out there.
2 The Scrapy team is working hard to rectify this. Scrapy relies on Python’s Twisted, an

event-driven networking engine also making the journey to Python 3+ compatibility.

3 This is imported from the __future__ module (i.e., from __future__ import
print_function).

Anaconda
Installing some of the bigger Python libraries used to be a challenge
all in itself, particularly those such as NumPy that depend on com‐
plex low-level C and Fortran packages. That’s why the existence of
Anaconda is such a godsend. It does all the dependency checking
and binary installs so you don’t have to. It’s also a very convenient
resource for a book like this.

Python 2 or 3?
Right now, Python is in transition to version 3, a process that is tak‐
ing longer than many would like. This is because Python 2+ works
fine for many people, a lot of code will have to be converted,1 and
up until recently some of the big libraries, such as NumPy and
Scipy, only worked for Python 2.5+.

Now that most of the major libraries are compatible with Python 3,
it would be a no-brainer to recommend that version for this book.
Unfortunately, one of the few holdouts is Scrapy, a big tool on our
toolchain,2 which you’ll learn about in Chapter 6. I don’t want to
oblige you to run two versions, so for that reason we’ll be using the
version 2 Anaconda package.

I will be using the new print function,3 which means all the non-
Scrapy code will work fine with Python 3.

To get your free Anaconda install, just navigate your browser to
https://www.continuum.io/downloads, choose the version for your
operating system (as of late 2015, we’re going with Python 2.7), and
follow the instructions. Windows and OS X get a graphical installer
(just download and double-click), whereas Linux requires you to
run a little bash script:

$ bash Anaconda-2.3.0-Linux-x86_64.sh

I recommend sticking to defaults when installing Anaconda.

2 | Chapter 1: Development Setup

https://www.continuum.io/downloads

Checking the Anaconda Install
The best way to check that your Anaconda install went well is to try
firing up an IPython session at the command line. How you do this
depends on your operating system:

At the Windows command prompt:

C:\Users\Kyran>ipython

At the OS X or Linux prompt:

$ ipython

This should produce something like the following:

kyran@Tweedledum:~/projects/pyjsbook$ ipython
Python 2.7.10 |Anaconda 2.3.0 (64-bit)|
 (default, May 28 2015, 17:02:03) Type
"copyright", "credits" or "license" for more information.

IPython 3.2.0 -- An enhanced Interactive Python. Anaconda is
brought to you by Continuum Analytics. Please check out:
http://continuum.io/thanks and
https://anaconda.org
...

Most installation problems will stem from a badly configured envi‐
ronment PATH variable. This PATH needs to contain the location of
the main Anaconda directory and its Scripts subdirectory. In Win‐
dows, this should look something like:

'...C:\\Anaconda;C:\\Anaconda\Scripts...

You can access and adjust the environment variables in Windows 7
by typing environment variables in the program’s search field and
selecting “Edit environment variables” or in XP via Control
Panel→System→ Advanced→Environment Variables.

In OS X and Linux systems, you should be able to set your PATH
variable explicitly by appending this line to the .bashrc file in your
home directory:

export PATH=/home/${USER}/anaconda/bin:$PATH

Installing Extra Libraries
Anaconda contains almost all the Python libraries covered in this
book (see here for the full list of Anaconda libraries). Where we
need a non-Anaconda library, we can use pip (short for Pip Installs

Python | 3

http://docs.continuum.io/anaconda/pkg-docs
https://pypi.python.org/pypi/pip

Python), the de facto standard for installing Python libraries. Using
pip to install is as easy as can be. Just call pip install followed by
the name of the package from the command line and it should be
installed or, with any luck, give a sensible error:

$ pip install dataset

Virtual Environments
Virtual environments provide a way of creating a sandboxed devel‐
opment environment with a particular Python version and/or set of
third-party libraries. Using these virtual environments avoids pollut‐
ing your global Python with these installs and gives you a lot more
flexibility (you can play with different package versions or change
your Python version if need be). The use of virtual environments is
becoming a best practice in Python development, and I strongly
suggest that you follow it.

Anaconda comes with a conda system command that makes creat‐
ing and using virtual environments easy. Let’s create a special one for
this book, based on the full Anaconda package:

$ conda create --name pyjsviz anaconda
...
#
To activate this environment, use:
$ source activate pyjsviz
#
To deactivate this environment, use:
$ source deactivate
#

As the final message says, to use this virtual environment you need
only source activate it (for Windows machines you can leave out
the source):

$ source activate pyjsviz
discarding /home/kyran/anaconda/bin from PATH
prepending /home/kyran/.conda/envs/pyjsviz/bin to PATH
(pyjsviz) $

Note that you get a helpful cue at the command line to let you know
which virtual environment you’re using.

The conda command can do a lot more than just facilitate virtual
environments, combining the functionality of Python’s pip installer
and virtualenv command, among other things. You can get a full
rundown here.

4 | Chapter 1: Development Setup

http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://conda.pydata.org/docs/using/using.html

JavaScript
The good news is that you don’t need much JavaScript software at
all. The only must-have is the Chrome/Chromium web browser,
which is used in this book. It offers the most powerful set of devel‐
oper tools of any current browser and is cross-platform.

To download Chrome, just go here and download the version for
your operating system. This should be automatically detected.

If you want something slightly less Google-fied, then you can use
Chromium, the browser based on the open source project from
which Google Chrome is derived. You can find up-to-date instruc‐
tions on installation here or just head to the main download page.
Chromium tends to lag Chrome feature-wise but is still an emi‐
nently usable development browser.

Content Delivery Networks
One of the reasons you don’t have to worry about installing Java‐
Script libraries is that the ones used in this book are available via
content delivery networks (CDN). Rather than having the libraries
installed on your local machine, the JavaScript is retrieved by the
browser over the Web, from the closest available server. This should
make things very fast—faster than if you served the content
yourself.

To include a library via CDN, you use the usual <script> tag, typi‐
cally placed at the bottom of your HTML page. For example, the fol‐
lowing call adds the latest (as of late 2015) version of D3:

<script
 src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.6/d3.min.js"
 charset="utf-8">
</script>

Installing Libraries Locally
If you need to install JavaScript libraries locally, because, for exam‐
ple, you anticipate doing some offline development work or can’t
guarantee an Internet connection, there are a number of fairly sim‐
ple ways to do so.

JavaScript | 5

https://www.google.com/chrome/browser/desktop/
https://www.chromium.org/getting-involved/download-chromium
https://download-chromium.appspot.com/

You can just download the separate libraries and put them in your
local server’s static folder. This is a typical folder structure. Third-
party libraries go in the static/libs directory off root, like so:

nobel_viz/
└── static
 ├── css
 ├── data
 ├── libs
 │ └── d3.min.js
 └── js

If you organize things this way, to use D3 in your scripts now
requires a local file reference with the <script> tag:

<script src="/static/libs/d3.min.js"></script>

Databases
This book shows how to interact with the main SQL databases and
MongoDB, the chief nonrelational or NoSQL database, from
Python. We’ll be using SQLite, the brilliant file-based SQL database.
Here are the download details for SQLite and MongoDB:

SQLite
A great, file-based, serverless SQL database. It should come
standard with OS X and Linux. For Windows, follow this guide.

MongoDB
By a long shot, the most popular NoSQL database. Installation
instructions here.

Note that we’ll be using Python’s SQLAlchemy SQL library either
directly or through libraries that build on it. This means we can con‐
vert any SQLite examples to another SQL backend (e.g., MySQL or
PostgreSQL) by changing a configuration line or two.

Installing MongoDB
MongoDB can be a little trickier to install than some databases, but
it is well worth the effort. Its JSON-like document storage makes it a
natural for web-based dataviz work.

For OS X users, check out the official docs for MongoDB installation
instructions.

6 | Chapter 1: Development Setup

https://www.mongodb.org/
https://en.wikipedia.org/wiki/NoSQL
https://www.sqlite.org/
http://www.tutorialspoint.com/sqlite/sqlite_installation.htm
http://docs.mongodb.org/manual/installation/
http://www.sqlalchemy.org/
https://www.mysql.com/
http://www.postgresql.org/
https://docs.mongodb.com/v3.0/tutorial/install-mongodb-on-os-x/

This Windows-specific guide from the official docs should get your
MongoDB server up and running. You will probably need to use
administrator privileges to create the necessary data directories and
so on.

More often than not these days, you’ll be installing MongoDB to a
Linux-based server, most commonly an Ubuntu variant, which uses
the Deb file format to deliver its packages. The official MongoDB
docs do a good job covering an Ubuntu install.

MongoDB uses a data directory to store to and, depending how you
install it, you may need to create this yourself. On OS X and Linux
boxes, the default is a data directory off the root directory, which
you can create using mkdir as a superuser (sudo):

$ sudo mkdir /data
$ sudo mkdir /data/db

You’ll then want to set ownership to yourself:

$ sudo chown 'whoami' /data/db

With Windows, installing the MongoDB Community Edition, you
can create the necessary data directory with the following
command:

$ md \data\db

The MongoDB server will often be started by default on Linux
boxes; otherwise, on Linux and OS X the following command will
start a server instance:

$ mongod

On Windows Community Edition, the following, run from a com‐
mand prompt, will start a server instance:

C:\mongodb\bin\mongod.exe

Integrated Development Environments
As I explain in “The Myth of IDEs, Frameworks, and Tools” on page
88, you don’t need an IDE to program in Python or JavaScript. The
development tools provided by modern browsers, Chrome in partic‐
ular, mean you only really need a good code editor to have pretty
much the optimal setup. It’s free as in beer too.

For Python, I have tried a few IDEs but they’ve never stuck. The
main itch I was trying to scratch was a decent debugging system.

Integrated Development Environments | 7

https://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows/
https://en.wikipedia.org/wiki/Deb_(file_format)
https://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/
http://bit.ly/1S9am86

4 Emacs with VIM key bindings.
5 SQLite is great for development purposes and doesn’t need a server running on your

machine.

Setting breakpoints in Python with a text editor isn’t particularly ele‐
gant, and using the command-line debugger pdb feels a little too old
school sometimes. Nevertheless, Python’s logging is so easy and
effective that breakpoints became an edge case that didn’t justify
leaving my favorite editor,4 which does pretty decent code comple‐
tion and solid syntax highlighting.

In no particular order, here are a few that I’ve tried and not disliked:

PyCharm
This option offers solid code assistance and good debugging.

PyDev
If you like Eclipse and can tolerate its rather large footprint, this
might well be for you.

WingIDE
This is a solid bet, with a great debugger and incremental
improvements over a decade-and-a-half ’s worth of develop‐
ment.

Summary
With free, packaged Python distributions such as Anaconda, and the
inclusion of sophisticated JavaScript development tools in freely
available web browsers, the necessary Python and JavaScript ele‐
ments of your development environment are a couple of clicks away.
Add a favorite editor and a database of choice,5 and you are pretty
much good to go. There are additional libraries, such as node.js, that
can be useful but don’t count as essential. Now that we’ve established
our programming environment, the next chapters will teach the pre‐
liminaries needed to start our journey of data transformation along
the toolchain, starting with a language bridge between Python and
JavaScript.

8 | Chapter 1: Development Setup

https://www.jetbrains.com/pycharm/
http://pydev.org/
http://www.wingware.com/

PART I

Basic Toolkit

This first part of the book provides a basic toolkit for the toolchain
to come and is part tutorial, part reference. Given the fairly wide
range of knowledge in the target audience, there will probably be
things covered that you already know. My advice is just to cherry-
pick the material to fill any gaps in your knowledge and maybe skim
what you already know as a refresher.

If you’re confident you already have the basic toolkit at hand, feel
free to skip to the start of our journey along the toolchain in Part II.

CHAPTER 2

A Language-Learning Bridge
Between Python and JavaScript

Probably the most ambitious aspect of this book is that it deals with
two programming languages. Moreover, it only requires that you are
competent in one of these languages. This is only possible because
Python and JavaScript (JS) are fairly simple languages with much in
common. The aim of this chapter is to draw out those commonali‐
ties and use them to make a learning bridge between the two lan‐
guages such that core skills acquired in one can easily be applied to
the other.

After showing the key similarities and differences between the two
languages, I’ll show how to set up a learning environment for
Python and JS. The bulk of the chapter will then deal with core syn‐
tactical and conceptual differences, followed by a selection of pat‐
terns and idioms that I use often while doing data visualization
work.

11

1 One particularly annoying little gotcha is that while Python uses pop to remove a list
item, it uses append—not push—to add an item. JavaScript uses push to add an item,
whereas append is used to concatenate arrays.

2 The ascent of node.js has extended JavaScript to the server.

Similarities and Differences
Syntax differences aside, Python and JavaScript actually have a lot in
common. After a short while, switching between them can be
almost seamless.1 Let’s compare the two from a data visualizer’s
perspective:

These are the chief similarities:

• They both work without needing a compilation step (i.e., they
are interpreted).

• You can use both with an interactive interpreter, which means
you can type in lines of code and see the results right away.

• Both have garbage collection.
• Neither language has header files, package boilerplate, and so

on.
• Both are primarily developed with a text editor—not an IDE.
• In both, functions are first-class citizens, which can be passed as

arguments.

These are the key differences:

• Possibly the biggest difference is that JavaScript is single-
threaded and non-blocking, using asynchronous I/O. This
means that simple things like file access involve the use of a call‐
back function.

• JS is used essentially in web development and until very recently
was browser-bound,2 but Python is used almost everywhere.

• JS is the only first-class language in web browsers, Python being
excluded.

• Python has a comprehensive standard library, whereas JS has a
limited set of utility objects (e.g., JSON, Math).

12 | Chapter 2: A Language-Learning Bridge Between Python and JavaScript

https://nodejs.org/en/
http://bit.ly/1tADn8E
http://bit.ly/1tADn8E

3 This is changing with libraries like Crossfilter, but JS is far behind Python, R, and oth‐
ers.

4 This version is based on the Qt GUI library.
5 At the cost of a running a Python interpreter on the server.

• Python has fairly classical object-oriented classes, whereas JS
uses prototypes.

• JS lacks general-purpose data-processing libs.3

The differences here emphasize the need for this book to be bi-
lingual. JavaScript’s monopoly of browser dataviz needs the comple‐
ment of a conventional data-processing stack. And Python has the
best there is.

Interacting with the Code
One of the great advantages of Python and JavaScript is that because
they are interpreted on the fly, you can interact with them. Python’s
interpreter can be run from the command line, whereas JavaScript’s
is generally accessed from the web browser through a console, usu‐
ally available from the built-in development tools. In this section,
we’ll see how to fire up a session with the interpreter and start trying
out your code.

Python
By far, the best Python interpreter is IPython, which comes in three
shades: the basic terminal version, an enhanced graphical version,
and a Notebook. The Notebook is a wonderful and fairly recent
innovation, providing a browser-based interactive computational
environment. There are pros and cons to the different versions. The
command line is fastest to scratch a problematic itch but lacks some
bells and whistles, particularly embedded plotting courtesy of Mat‐
plotlib and friends. The makes it suboptimal for Pandas-based data-
processing and data visualization work. Of the other two, both are
better for multiline coding (e.g., trying out functions) than the basic
interpreter, but I find the graphical Qt console more intuitive, hav‐
ing a familiar command line rather than executable cells.4 The great
boon of the Notebook is session persistence and the possibility of
web access.5 The ease with which one can share programming ses‐
sions, complete with embedded data visualizations, makes the Note‐

Interacting with the Code | 13

http://www.qt.io
http://ipython.org/
http://matplotlib.org/
http://matplotlib.org/
http://pandas.pydata.org/
http://pandas.pydata.org/

book a fantastic teaching tool as well as a great way to recover
programming context.

You can start them at the command line like this:

$ ipython [qt | notebook]

Options can be empty for the basic command-line interpreter, -qt
for a Qt-based graphical version, and -notebook for the browser-
based Notebook. You can use any of the three IPython alternatives
for this section, but for serious interactive data processing, I gener‐
ally find myself gravitating to the Qt console for sketches or the
Notebook if I anticipate an extensive project.

The IPython notebook has recently been spun into Project Jupyter.
A Jupyter notebook can be started from the command line with:

$ jupyter notebook

JavaScript
There are lots of options for trying out JavaScript code without
starting a server, though the latter isn’t that difficult. Because the
JavaScript interpreter comes embedded in all modern web browsers,
there are a number of sites that let you try out bits of JavaScript
along with HTML and CSS and see the results. JSBin is a good
option. These sites are great for sharing code and trying out snip‐
pets, and usually allow you to add libraries such as D3.js.

If you want to try out code one-liners or quiz the state of live code,
browser-based consoles are your best bet. With Chrome, you can
access the console with the key combo Ctrl-Shift-J. As well as trying
little JS snippets, the console allows you to drill down into any
objects in scope, revealing their methods and properties. This is a
great way to quiz the state of a live object and search for bugs.

One disadvantage of using online JavaScript editors is losing the
power of your favorite editing environment, with linting, familiar
keyboard shortcuts, and the like (see Chapter 4). Online editors tend
to be rudimentary, to say the least. If you anticipate an extensive
JavaScript session and want to use your favorite editor, the best bet is
to run a local server.

First, create a project directory—called sandpit, for example—and
add a minimal HTML file that includes a JS script:

14 | Chapter 2: A Language-Learning Bridge Between Python and JavaScript

http://jupyter.org
https://jsbin.com

sandpit
├── index.html
└── script.js

The index.html file need only be a few lines long, with an optional
div placeholder on which to start building your visualization or just
trying out a little DOM manipulation.

<!-- index.html -->
<!DOCTYPE html>
<meta charset="utf-8">

<div id='viz'></div>

<script type="text/javascript" src="script.js" async></script>

You can then add a little JavaScript to your script.js file:

// script.js
var data = [3, 7, 2, 9, 1, 11];
var sum = 0;
data.forEach(function(d){
 sum += d;
});

console.log('Sum = ' + sum);
// outputs 'Sum = 33'

Start your development server in the project directory:

$ python -m SimpleHTTPServer
Serving HTTP on 0.0.0.0 port 8000 ...

Then open your browser at http://localhost:8000, press Ctrl-Shift-J
(Cmd-Opt-J on OS X) to access the console and you should see
Figure 2-1, showing the logged output of the script (see Chapter 4
for further details).

Figure 2-1. Outputting to the Chrome console

Now that we’ve established how to run the demo code, let’s start
building a bridge between Python and JavaScript. First, we’ll cover
the basic differences in syntax. As you’ll see, they’re fairly minor and
easily absorbed.

Interacting with the Code | 15

http://localhost:8000

Basic Bridge Work
In this section, I’ll contrast the basic nuts and bolts of programming
in the two languages.

Style Guidelines, PEP 8, and use strict
Where JavaScript style guidelines are a bit of a free-for-all (with peo‐
ple often defaulting to those used by a big library like jQuery),
Python has a Python Enhancement Proposal (PEP) dedicated to it.
I’d recommend getting acquainted with PEP-8 but not submitting
totally to its leadership. It’s right about most things, but there’s room
for some personal choice here. There’s a handy online checker here,
which will pick up any infractions of PEP-8.

In Python, you should use four spaces to indent a code block. Java‐
Script is less strict, but two spaces is the most common indent.

One recent addition to JavaScript (Ecmascript 5) is the 'use
strict' directive, which imposes strict mode. This mode enforces
some good JavaScript practice, which includes catching accidental
global declarations, and I thoroughly recommend its use. To use it,
just place the string at the top of your function or module:

(function(foo){
 'use strict';
 // ...
}(window.foo = window.foo || {});

CamelCase Versus Underscore
JS conventionally uses CamelCase (e.g., processStudentData) for its
variables, whereas Python, in accordance with PEP-8, uses under‐
scores (e.g., process_student_data) in its variable names (see Sec‐
tion B in Examples 2-3 and 2-4). By convention (and convention is
more important in the Python ecosystem than JS), Python uses capi‐
talized CamelCase for class declarations (see the following example),
uppercase for constants, and underscores for everything else:

FOO_CONST = 10
class FooBar(object): # ...
def foo_bar():
 baz_bar = 'some string'

16 | Chapter 2: A Language-Learning Bridge Between Python and JavaScript

http://pep8online.com/

6 The constraint of having to deliver JS scripts over the Web via HTTP is largely respon‐
sible for this.

7 This means any blocking-script-loading calls occur after the page’s HTML has
rendered.

Importing Modules, Including Scripts
Using other libraries in your code, either your own or third-party, is
fundamental to modern programming, which makes it all the more
surprising that JavaScript doesn’t really have a mechanism for doing
it.6 Python has a simple import system that, on the whole, works
pretty well.

The good news on the JavaScript front is that Ecmascript 6, the next
version of the language, does address this issue, with the addition of
import and export statements. Ecmascript 6 will be getting browser
support soon, but as of late 2015 you need a converter to Ecmascript
5, such as Babel.js. Meanwhile, although there have been many
attempts to create a reasonable client-side modular system, none
have really achieved critical mass and all are a little awkward to use.
For now, I recommend using the well-established HTML <script>
tag to include scripts. So to include the D3 visualization library, you
would add this tag to your main HTML file, conventionally
index.html:

<!DOCTYPE html>
<meta charset="utf-8">
...
 <script src="http://d3js.org/d3.v3.min.js"></script>

You can include the script anywhere in your HTML file, but it’s best
practice to add scripts after the body (div tags, etc.) section.7 Note
that the order of the <script> tags is important. If a script is depen‐
dent on a module (e.g., it uses the D3 library), its <script> tag must
be placed after that of the module. In other words, big library
scripts, such as jQuery and D3, will be included first.

Python comes with “batteries included,” a comprehensive set of
libraries covering everything from extended data containers (collec
tions) to working with the family of CSV files (csv). If you want to
use one of these, just import it using the import keyword:

Basic Bridge Work | 17

https://babeljs.io/

In [1]: import sys

In [2]: sys.platform
Out[2]: 'linux2'

If you don’t want to import the whole library or want to use an alias,
you can use the as and from keywords instead:

import pandas as pd
from csv import DictWriter, DictReader
from numpy import *

df = pd.read_json('data.json')
reader = DictReader('data.csv')
md = median([12, 56, 44, 33])

This imports all the variables from the module into the current
namespace and is almost always a bad idea. One of the variables
could mask an existing one, and it goes against the Python best
practice of explicit being better than implicit. One exception to
this rule is if you are using the Python interpreter interactively.
In this limited context, it may make sense to import all func‐
tions from a library to cut down on key presses; for example,
importing all the math functions (from math import *) if
doing some Python math hacking.

If you import a nonstandard library, Python uses sys.path to try to
find it. sys.path consists of:

• The directory containing the importing module (current
directory)

• The PYTHOPATH variable, containing a list of directories
• The installation-dependent default, where libraries installed

using pip or easy_install will usually be placed

Big libraries are often packaged, divided into submodules. These
submodules are accessed by dot notation:

import matplotlib.pyplot as plt

Packages are constructed from the filesystem via __init__.py files,
usually empty, as shown in Example 2-1. The presence of an init file
makes the directory visible to Python’s import system.

18 | Chapter 2: A Language-Learning Bridge Between Python and JavaScript

Example 2-1. Building a Python package

mypackage
├── __init__.py
...
├── core
│ └── __init__.py
│ ...
...
└── io
 ├── __init__.py
 └── api.py
 ...
 └── tests
 └── __init__.py
 └── test_data.py
 └── test_excel.py
 ...
...

You would import this module using from mypack

age.io.tests import test_excel.

You can access packages on sys.path from the root directory (that’s
mypackage in Example 2-1) using dot notation. A special case of
import is intrapackage references. The test_excel.py submodule in
Example 2-1 can import submodules from the mypackage package
both absolutely and relatively:

from mypackage.io.tests import test_data
from . import test_data
import test_data
from ..io import api

Imports the test_data.py module absolutely, from the package’s
head directory.

An explicit (. import) and implicit relative import.

A relative import from a sibling package of tests.

Keeping Your Namespaces Clean
The variables defined in Python modules are encapsulated, which
means that unless you import them explicitly (e.g., from foo

import baa), you will be accessing them from the imported mod‐
ule’s namespace using dot notation (e.g., foo.baa). This modulariza‐

Basic Bridge Work | 19

8 You can eliminate the possibility of a missing var by using the Ecmascript 5 'use
strict' directive.

tion of the global namespace is quite rightly seen as a very good
thing and plays to one of Python’s key tenets: the importance of
explicit statements over implicit. When analyzing someone’s Python
code you should be able to see exactly where a class, function, or
variable has come from. Just as importantly, preserving the name‐
space limits the chance of conflicting or masking variables—a big
potential problem as code bases get larger.

One of the main criticisms of JavaScript, and a fair one, is that it
plays fast and loose with namespace conventions. The most egre‐
gious example of this is that variables declared outside of functions
or missing the var keyword8 are global rather than confined to the
script in which they are declared. There are various ways to rectify
this situation, but the one I use and recommend is to make each of
your scripts a self-calling function. This makes all variables declared
via var local to the script/function, preventing them from polluting
the global namespace. Any objects, functions, and variables you
want to make available to other scripts can be attached to an object
that is part of the global namespace.

Example 2-2 demonstrates a module pattern. The boilerplate head
and tail (labeled and) effectively create an encapsulated mod‐
ule. This pattern is far from a perfect solution to modular JavaScript
but is the best compromise I know until Ecmascript 6 and a dedica‐
ted import system becomes standard. One obvious disadvantage is
that the module is part of the global namespace, which means,
unlike in Python, there is no need to explicitly import it.

Example 2-2. A module pattern for JavaScript

(function(nbviz) {
 'use strict';
 // ...
 nbviz.updateTimeChart = function(data) {
 // ...
}(window.nbviz = window.nbviz || {}));

Receives the global nbviz object.

20 | Chapter 2: A Language-Learning Bridge Between Python and JavaScript

9 This is a good thing for reasons outlined in PEP 3105.

Attaches the updateTimeChart method to the global nbviz
object, effectively exporting it.

If an nbviz object exists in the global (window) namespace, pass
it into the module function; otherwise, add it to the global
namespace.

Outputting “Hello World!”
By far the most popular initial demonstration of any programming
language is getting it to print or communicate “Hello World!” in
some form, so let’s start with getting output from Python and
JavaScript.

Python’s output couldn’t be much simpler, but version 3 sees a
change to the print statement, making it a proper function:9

In Python 2
print 'Hello World!'

In Python 3
print('Hello World!')

You can use Python 3’s print function in Python 2 by importing it
from the __future__ module:

from __future__ import print_function

If you’re not using Python 3, then this is a sensible approach. The
new print function is here to stay and it’s best to get used to it now.

JavaScript has no print function, but you can log output to the
browser console:

console.log('Hello World!);

Simple Data Processing
A good way to get an overview of the language differences is to see
the same function written in both. Examples 2-3 and 2-4 show a
small, contrived example of data munging in Python and JavaScript,
respectively. We’ll use these to compare Python and JS syntax.

Basic Bridge Work | 21

https://www.python.org/dev/peps/pep-3105/

Example 2-3. Simple data munging with Python

from __future__ import print_function

A
student_data = [
 {'name': 'Bob', 'id':0, 'scores':[68, 75, 56, 81]},
 {'name': 'Alice', 'id':1, 'scores':[75, 90, 64, 88]},
 {'name': 'Carol', 'id':2, 'scores':[59, 74, 71, 68]},
 {'name': 'Dan', 'id':3, 'scores':[64, 58, 53, 62]},
]

B
def process_student_data(data, pass_threshold=60,
 merit_threshold=75):
 """ Perform some basic stats on some student data. """

 # C
 for sdata in data:
 av = sum(sdata['scores'])/float(len(sdata['scores']))
 sdata['average'] = av

 if av > merit_threshold:
 sdata['assessment'] = 'passed with merit'
 elif av > pass_threshold:
 sdata['assessment'] = 'passed'
 else:
 sdata['assessment'] = 'failed'
 # D
 print("%s's (id: %d) final assessment is: %s"%(
 sdata['name'], sdata['id'], sdata['assessment'].upper()))

E
if __name__ == '__main__':
 process_student_data(student_data)

Example 2-4. Simple data munging with JavaScript

// A (note deliberate and valid inconsistency in keys: some quoted
// and some unquoted)
var studentData = [
 {name: 'Bob', id:0, 'scores':[68, 75, 76, 81]},
 {name: 'Alice', id:1, 'scores':[75, 90, 64, 88]},
 {'name': 'Carol', id:2, 'scores':[59, 74, 71, 68]},
 {'name': 'Dan', id:3, 'scores':[64, 58, 53, 62]},
];

// B
function processStudentData(data, passThreshold, meritThreshold){
 passThreshold = typeof passThreshold !== 'undefined'?\
 passThreshold: 60;

22 | Chapter 2: A Language-Learning Bridge Between Python and JavaScript

 meritThreshold = typeof meritThreshold !== 'undefined'?\
 meritThreshold: 75;

 // C
 data.forEach(function(sdata){
 var av = sdata.scores.reduce(function(prev, current){
 return prev+current;
 },0) / sdata.scores.length;
 sdata.average = av;

 if(av > meritThreshold){
 sdata.assessment = 'passed with merit';
 }
 else if(av > passThreshold){
 sdata.assessment = 'passed';
 }
 else{
 sdata.assessment = 'failed';
 }
 // D
 console.log(sdata.name + "'s (id: " + sdata.id +
 ") final assessment is: " +
 sdata.assessment.toUpperCase());
 });

}

// E
processStudentData(studentData);

String Construction
Section D in Examples 2-3 and 2-4 show the standard way to print
output to the console or terminal. JavaScript has no print statement
but will log to the browser’s console through the console object.

console.log(sdata.name + "'s (id: " + sdata.id +
 ") final assessment is: " + sdata.assessment.toUpperCase());

Note that the integer variable id is coerced to a string, allowing con‐
catenation. Python doesn’t perform this implicit coercion, so
attempting to add a string to an integer in this way gives an error.
Instead, explicit conversion to string form is achieved through one
of the str or repr functions.

In section A of Example 2-3, the output string is constructed with C
type formatting. String (%s) and integer (%d) placeholders are pro‐
vided by a final tuple (%(…)):

Basic Bridge Work | 23

10 This is actually done by JavaScript compressors to reduce the file size of downloaded
web pages.

11 The soft versus hard tab debate generates controversy, with much heat and little light.
PEP 8 stipulates spaces, which is good enough for me.

print("%s's (id: %d) final assessment is: %s"
 %(sdata['name'], sdata['id'], sdata['assessment'].upper()))

These days, I rarely use Python’s print statement, opting for the
much more powerful and flexible logging module, which is demon‐
strated in the following code block. It takes a little more effort to use,
but it is worth it. Logging gives you the flexibility to direct output to
a file and/or the screen, adjusting the logging level to prioritize cer‐
tain information, and a whole load of other useful things. Check out
the details here.

import logging
logger = logging.getLogger(__name__)
//...
logger.debug('Some useful debugging output')
logger.info('Some general information')

// IN INITIAL MODULE
logging.basicConfig(level=logging.DEBUG)

Creates a logger with the name of this module.

You can set the logging level, an output file as opposed to the
default to screen.

Significant Whitespace Versus Curly Brackets
The syntactic feature most associated with Python is significant
whitespace. Whereas languages like C and JavaScript use whitespace
for readability and could easily be condensed into one line,10 in
Python leading spaces are used to indicate code blocks and remov‐
ing them changes the meaning of the code. The extra effort required
to maintain correct code alignment is more than compensated for
by increased readability—you spend far longer reading than writing
code and the easy reading of Python is probably the main reason
why the Python library ecosystem is so healthy. Four spaces is pretty
much mandatory (see PEP 8) and my personal preference is for
what is known as soft tabs, where your editor inserts (and deletes)
multiple spaces instead of a tab character.11

24 | Chapter 2: A Language-Learning Bridge Between Python and JavaScript

https://docs.python.org/2/howto/logging.html

12 It could be two or even three spaces, but this number must be consistent throughout
the module.

In the following code, the indentation of the return statement must
be four spaces by convention:12

def doubler(x):
 return x * 2
|<-this spacing is important

JavaScript doesn’t care about the number of spaces between state‐
ments and variables, using curly brackets to demark code blocks, the
two doubler functions in this code being equivalent:

var doubler = function(x){
 return x * 2;
}

var doubler=function(x){return x*2;}

Much is made of Python’s whitespace, but most good coders I know
set up their editors to enforce indented code blocks and a consistent
look and feel. Python merely enforces this good practice. And, to
reiterate, I believe the extreme readability of Python code contrib‐
utes as much to Python’s supremely healthy ecosystem as its simple
syntax.

Comments and doc-strings
To add comments to code, Python uses hashes, #:

ex.py, a single informative comment

data = {} # Our main data-ball

By contrast, JavaScript uses the C language convention of double
backslashes (//) or /* … */ for multiline comments:

// script.js, a single informative comment
/* A multiline comment block for
function descriptions, library script
headers, and the like */
var data = {}; // Our main data-ball

In addition to comments, and in keeping with its philosophy of
readability and transparency, Python has documentation strings
(docstrings) by convention. The process_student_data function in
Example 2-3 has a triple-quoted line of text at its top that will auto‐

Basic Bridge Work | 25

matically be assigned to the function’s __doc__ attribute. You can
also use multiline doc-strings.

def doubler(x):
 """This function returns double its input."""
 return 2 * x

def sanitize_string(s):
 """This function replaces any string spaces
 with '-' after stripping any whitespace
 """
 return s.strip().replace(' ', '-')

Doc-strings are a great habit to get into, particularly if you are work‐
ing collaboratively. They are understood by most decent Python
editing toolsets and are also used by such automated documentation
libraries as Sphinx. The string-literal doc-string is accessible as the
doc property of a function or class.

Declaring Variables, var
In Section A of Examples 2-3 and 2-4, the declaration of the student
data requires a var keyword for JavaScript. We could dispense with
the var and the script would run fine, but we would be in danger of
being skewered by JS gotcha number one: any variables declared
without var are attached to the global namespace, or window object,
which means they can easily mask or be masked by any other vari‐
ables sharing the same name. This possibility of namespace pollu‐
tion is a big problem for JS and the reason you should get a good
linter to warn of missing vars. You should also use Ecmascript’s
'use strict' directive to force all variables to be declared with var
(see “Style Guidelines, PEP 8, and use strict” on page 16).

Strictly speaking, JS statements should be terminated with a semico‐
lon as opposed to Python’s newline. You will see examples where the
semicolon is dispensed with, and modern browsers will usually do
the right thing here, but there are risks involved (e.g., it can trip up
code minifiers and compressors that remove whitespace). I’m in the
semicolon camp, but many smart people seem to make do without
them.

26 | Chapter 2: A Language-Learning Bridge Between Python and JavaScript

http://sphinx-doc.org/

13 The quite fair assumption that JavaScript uses UTF-16 has been the cause of much bug-
driven misery. See here for an interesting analysis.

14 The change to Unicode strings in Python 3 is a big one. Given the confusion that often
attends Unicode de/encoding, it’s worth reading a little bit about it.

15 parseInt can do quite a bit more than round. For example, parseInt(12.5px) gives
12, first removing the px and then casting the string to a number. It also has a second
radix argument to specify the base of the cast. See here for the specifics.

Declare all variables to be used in a function at
its top. JavaScript has variable hoisting, which
means variables are processed before any other
code. This means declaring them anywhere in
the function is equivalent to declaring them at
the top. This can result in weird errors and con‐
fusion. Explicitly placing vars at the top avoids
this.

Strings and Numbers
The name strings used in the student data (see Section A of Exam‐
ples 2-3 and 2-4) will be interpreted as UCS-2 (the parent of unicode
UTF-16) in JavaScript,13 a string of bytes in Python 2, and Unicode
(UTF-8 by default) in Python 3.14

Both languages allow single and double quotes for strings. If you
want to include a single or double quote in the string, then enclose
with the alternative, like so:

pub_name = "The Brewer's Tap"

The scores in Section A of Example 2-4 are stored as JavaScript’s
one numeric type, double-precision 64-bit (IEEE 754) floating-point
numbers. Although JavaScript has a parseInt conversion function,
when used with floats,15 it is really just a rounding operator, similar
to floor. The type of the parsed number is still number:

var x = parseInt(3.45); // 'cast' x to 3
typeof(x); // "number"

Python has three numeric types: the 32-bit int,to which the student
scores are cast, a float equivalent (IEE 754) to JS’s number, and a
long for arbitrary precision integer arithmetic. This means that

Basic Bridge Work | 27

https://mathiasbynens.be/notes/javascript-encoding
https://docs.python.org/3/howto/unicode.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/parseInt

16 Because all numbers in JavaScript are floating point, it can only support 53-bit integers.
Using larger integers (such as the commonly used 64 bit) can result in discontinuous
integers. See http://www.2ality.com/2012/07/large-integers.html for further information.

Python can represent any integer, whereas JavaScript is more limi‐
ted.16 Python’s casting changes type:

foo = 3.4 # type(foo) -> float
bar = int(3.4) # type(bar) -> int

The nice thing about Python and JavaScript numbers is that they are
easy to work with and usually do what you want. If you need some‐
thing more efficient, Python has the NumPy library, which allows
fine-grained control of your numeric types (you’ll learn more about
NumPy in Chapter 7). In JavaScript, aside from some cutting-edge
projects, you’re pretty much stuck with 64-bit floats.

Booleans
Python differs from the JavaScript and the C class languages in
using named boolean operators. Other than that, they work pretty
much as expected. This table gives a comparison:

Python bool True False not and or

JavaScript boolean true false ! && +`

Python’s capitalized True and False is an obvious trip-up for any
JavaScripter and vice versa, but any decent syntax highlighting
should catch that, as should your code linter.

Rather than always returning boolean true or false, both Python and
JavaScript and/or expressions return the result of one of the argu‐
ments, which may of course be a boolean value. Table 2-1 shows
how this works, using Python to demonstrate.

Table 2-1. Python’s boolean operators

Operation Result
x or y if x is false, then y, else x

x and y if x is false, then x, else y

not x if x is false, then True, else False

This fact allows for some occasionally useful variable assignments:

28 | Chapter 2: A Language-Learning Bridge Between Python and JavaScript

http://www.2ality.com/2012/07/large-integers.html

rocket_launch = True
(rocket_launch == True and 'All OK') or 'We have a problem!'
Out:
'All OK'

rocket_launch = False
(rocket_launch == True and 'All OK') or 'We have a problem!'
Out:
'We have a problem!'

Data Containers: Dicts, Objects, Lists, Arrays
Roughly speaking, JavaScript objects can be used like Python
dicts, and Python lists like JavaScript arrays. Python also has a
tuple container, which functions like an immutable list. Here are
some examples:

Python
d = {'name': 'Groucho', 'occupation': 'Ruler of Freedonia'}
l = ['Harpo', 'Groucho', 99]
t = ('an', 'immutable', 'container')

// JavaScript
d = {'name': 'Groucho', 'occupation': 'Ruler of Freedonia'}
l = ['Harpo', 'Groucho', 99]

As shown in Section A of Examples 2-3 and 2-4, while Python’s dict
keys must be quote-marked strings (or hashable types), JavaScript
allows you to omit the quotes if the property is a valid identifier (i.e.,
not containing special characters such as spaces and dashes). So in
our studentData objects, JS implicitly converts the property 'name'
to string form.

The student data declarations look pretty much the same and, in
practice, are used pretty much the same, too. The key difference to
note is that while the curly-bracketed containers in the JS student
Data look like Python dicts, they are actually a shorthand declara‐
tion of JS objects, a somewhat different data container.

In JS data visualization, we tend to use arrays of objects as the chief
data container and here, JS objects function much as a Pythonista
would expect. In fact, as demonstrated in the following code, we get
the advantage of both dot notation and key-string access, the former
being preferred where applicable (keys with spaces or dashes need‐
ing quoted strings):

Basic Bridge Work | 29

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects

17 This makes iterating over their properties a little trickier than it might be. See here for
more details.

var foo = {bar:3, baz:5};
foo.bar; // 3
foo['baz']; // 5, same as Python

It’s good to be aware that although they can be used like Python dic‐
tionaries, JavaScript objects are much more than just containers
(aside from primitives like strings and numbers, pretty much every‐
thing in JavaScript is an object).17 But in most dataviz examples you
see, they are used very much like Python dicts.

Table 2-2 converts basic list operations.

Table 2-2. Lists and arrays

JavaScript array (a) Python list (l)

a.length len(l)

a.push(item) l.append(item)

a.pop() l.pop()

a.shift() l.pop(0)

a.unshift(item) l.insert(0, item)

a.slice(start, end) l[start:end]

a.splice(start, howMany, i1, …) l[start:end] = [i1, …]

Functions
Section B of Examples 2-3 and 2-4 shows a function declaration.
Python uses def to indicate a function:

def process_student_data(data, pass_threshold=60,
 merit_threshold=75):
 """ Perform some basic stats on some student data. """
 ...

whereas JavaScript uses function:

function processStudentData(data, passThreshold, meritThreshold){
 passThreshold = typeof passThreshold !== 'undefined'?
 passThreshold: 60;
 meritThreshold = typeof meritThreshold !== 'undefined'?
 meritThreshold: 75;
 ...
}

30 | Chapter 2: A Language-Learning Bridge Between Python and JavaScript

http://stackoverflow.com/questions/8312459/iterate-through-object-properties

18 For the curious, there’s a nice summation here.

Both have a list of parameters. With JS, the function code block is
indicated by the curly brackets { … }; with Python, the code block is
defined by a colon and indentation.

JS has an alternative way of defining a function called the function
expression, which you may see in examples:

var processStudentData = function(...){

The differences are subtle enough not to worry about for now.18 For
what it’s worth, I tend to use function expressions pretty much
exclusively.

Function parameters is an area where Python’s handling is a great
deal more sophisticated than JavaScript’s. As you can see in pro
cess_student_data (Section B in Example 2-3), Python allows
default arguments for the parameters. In JavaScript, all parameters
not used in the function call are declared as undefined. In order to
set a default value for these, we have to perform a distinctly hacky
conditional (ternary) expression:

function processStudentData(data, passThreshold, meritThreshold){
 passThreshold = typeof passThreshold !== 'undefined'?
 passThreshold: 60;
 ...

The good news for JavaScripters is that the latest version of Java‐
Script, based on Ecmascript 6 and coming very soon, allows Python-
like default parameters:

function processStudentData(data, passThreshold=60,
 meritThreshold=75){
...

Iterating: for Loops and Functional Alternatives
Section C in Examples 2-3 and 2-4 shows our first major departure,
demonstrating JavaScript’s functional chops.

Python’s for loops are simple, intuitive, and effective on any iterator,
such as arrays and dicts. One gotcha with dicts is that standard
iteration is by key, not items. For example:

Basic Bridge Work | 31

https://javascriptweblog.wordpress.com/2010/07/06/function-declarations-vs-function-expressions/
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/default_parameters

foo = {'a':3, 'b':2}
for x in foo:
 print(x)
outputs 'a' 'b'

To iterate over the key-value pairs, use the dict’s items method like
so:

for x in foo.items():
 print(x)
outputs key-value tuples ('a', 3) ('b' 2)

You can assign the key/values in the for statement for convenience.
For example:

for key, value in foo.items():

Because Python’s for loop works on anything with the correct itera‐
tor plumbing, you can do cool things like loop over file lines:

for line in open('data.txt'):
 print(line)

Coming from Python, JS’s for loop is a pretty horrible, unintuitive
thing. Here’s an example:

for(var i in ['a', 'b', 'c']){
 console.log(i)
}
outputs 1, 2, 3

JS’s for .. in returns the index of the array’s items, not the items
themselves. To compound matters, for the Pythonista, the order of
iteration is not guaranteed, so the indices could be returned in non-
consecutive order.

Even iterating over an object is trickier than it might have been.
Unlike Python’s dicts, objects could have inherited properties from
the prototyping chain, so you should use a hasOwnProperty guard to
filter these out, like so:

var obj = {a:3, b:2, c:4};
for (var prop in obj) {
 if(obj.hasOwnProperty(prop)) {
 console.log("o." + prop + " = " + obj[prop]);
 }
}
// out: o.a = 3, o.b = 2, o.c = 4

Shifting between Python and JS for loops is hardly seamless,
demanding you keep on the ball. The good news is that you hardly

32 | Chapter 2: A Language-Learning Bridge Between Python and JavaScript

19 This is one area where JS beats Python hands down and which finds many of us wish‐
ing for similar functionality in Python.

20 Added with Ecmascript 5 and available on all modern browsers.
21 I use lodash, which is functionally identical.

need to use JS for loops these days. In fact, I almost never find the
need. That’s because JS has recently acquired some very powerful
first-class functional abilities, which have more expressive power
and less scope for confusion with Python and, once you get used to
them, quickly become indispensable.19

Section C in Example 2-4 demonstrates forEach(), one of the func‐
tional methods available to modern JavaScript arrays.20 forEach()
iterates over the array’s items, sending them in turn to an anony‐
mous callback function defined in the first argument, where they
can be processed. The true expressive power of these functional
methods comes from chaining them (maps, filters, etc.), but already
we have a cleaner, more elegant iteration with none of the awkward
bookkeeping of old.

The callback function receives index and the original array as an
optional second argument.

data.forEach(function(currentValue, index){//---

Whereas JS arrays have a set of native functional iterator methods
(map, reduce, filter, every, sum, reduceRight), Objects—in their
guise as pseudo-dictionaries—don’t. If you want to iterate over
Object key-value pairs, then I’d recommend using underscore,21 the
most frequently used functional library for JS and almost as ubiqui‐
tous as jQuery. Underscore methods are accessed with the short‐
hand _, like this:

_.each(obj, function(value, key){
 // do something with the data..

This does introduce a library dependency, but this type of iteration
is very common in data-visualization work and underscore has lots
of other goodies. Along with jQuery, it has pretty much honorary JS
standard-library status.

Basic Bridge Work | 33

Conditionals: if, else, elif, switch
Section C in Examples 2-3 and 2-4 shows Python and JavaScript
conditionals in action. Aside from JavaScript’s bracket fetish, the
statements are very similar; the only real difference being Python’s
extra elif keyword, a convenient conjunction of else if.

Though much requested, Python does not have the switch state‐
ment found in most high-level languages. JS does, allowing you to
do this:

switch(expression){
 case value1:
 // execute if expression === value1
 break; // optional end expression
 case value2:
 //...
 default:
 // if other matches fail

File Input and Output
JavaScript has no real equivalent of file input and output (I/O), but
Python’s is as simple as could be:

READING A FILE
f = open("data.txt") # open file for reading

for line in f: # iterate over file lines
 print(line)

lines = f.readlines() # grab all lines in file into array
data = f.read() # read all of file as single string

WRITING TO A FILE
f = open("data.txt", 'w')
use 'w' to write, 'a' to append to file
f.write("this will be written as a line to the file")
f.close() # explicitly close the file

One much recommended best practice is to use Python’s with, as
context manager when opening files. This ensures they are closed
automatically when leaving the block, essentially providing syntactic
sugar for a try, except, finally block. Here’s how to open a file
using with, as:

with open("data.txt") as f:
 lines = f.readlines()
 ...

34 | Chapter 2: A Language-Learning Bridge Between Python and JavaScript

22 I mentioned to a talented programmer friend that I was faced with the challenge of
explaining prototypes to Python programmers and he pointed out that most JavaScrip‐
ters could probably do with some pointers too. There’s a lot of truth in this and many
JSers do manage to be productive by using prototypes in a classy way, hacking their way
around the edge cases.

Classes and Prototypes
Possibly the cause of more confusion that any other topic is
JavaScript’s choice of prototypes rather than classical classes as its
chief object-oriented programming (OOP) element. I have come to
appreciate the concept of prototypes, if not its JS implementation,
which could have been cleaner. Nevertheless, once you get the basic
principle, you may find that it is actually a better mental model for
much of what we do as programmers than classical OOP paradigms.

I remember, when I first started my forays into more advanced lan‐
guages like C++, falling for the promise of OOP, particularly class-
based inheritance. Polymorphism was all the rage and Shape classes
were being subclassed to rectangles and ellipses, which were in turn
subclassed to more specialized squares and circles.

It didn’t take long to realize that the clean class divisions found in
the textbooks were rarely found in real programming and that try‐
ing to balance generic and specific APIs quickly became fraught. In
this sense, I find composition and mix-ins much more useful as a
programming concept than attempts at extended subclassing and
often avoid all these by using functional programming techniques,
particularly in JavaScript. Nevertheless, the class/prototype distinc‐
tion is an obvious difference between the two languages, and the
more you understand its nuances, the better you’ll code.22

Python’s classes are fairly simple affairs and, as with most of the lan‐
guage, easy to use. I tend to think of them these days as a handy way
to encapsulate data with a convenient API, and rarely extend sub-
classing beyond one generation. Here’s a simple example:

class Citizen(object):

 def __init__(self, name, country):
 self.name = name
 self.country = country

 def print_details(self):
 print('Citizen %s from %s'%(self.name, self.country))

Basic Bridge Work | 35

c = Citizen('Groucho M.', 'Freedonia')
c.print_details()
Out:
Citizen Groucho M. from Freedonia

Python classes have a number of double-underscored special
methods, __init__ being the most common, called when the
class instance is created. All instance methods have a first,
explicit self argument (you could name it something else, but
it’s a very bad idea), which refers to the instance. In this case, we
use it to set name and country properties.

Creates a new Citizen instance, initialized with name and
country.

Python follows a fairly classical pattern of class inheritance. It’s easy
to do, which is probably why Pythonistas make a lot of use of it. Let’s
customize the Citizen class to create a (Nobel Prize) Winner class
with a couple of extra properties:

class Winner(Citizen):

 def __init__(self, name, country, category, year):
 super(Winner, self).__init__(name, country)
 self.category = category
 self.year = year

 def print_details(self):
 print('Nobel winner %s from %s, category %s, year %s'\
 %(self.name, self.country, self.category,\
 str(self.year)))

w = Winner('Albert E.', 'Switzerland', 'Physics', 1921)
w.print_details()
Out:
Nobel prize-winner Albert E. from Switzerland, category Physics,
year 1921

We want to reuse the superclass Citizen’s __init__ method,
using this Winner instance as self. The super method scales the
inheritance tree one branch from its first argument, supplying
the second as instance to the class-instance method.

36 | Chapter 2: A Language-Learning Bridge Between Python and JavaScript

I think the best article I have read on the key difference between
JavaScript’s prototypes and classical classes is Reginald Braithwaite’s
“OOP, JavaScript, and so-called Classes”. This quote sums up the
difference between classes and prototypes as nicely as any I’ve
found:

The difference between a prototype and a class is similar to the dif‐
ference between a model home and a blueprint for a home.

When you instantiate a C++ or Python class, a blueprint is followed,
creating an object and calling its various constructors in the inheri‐
tance tree. In other words, you start from scratch and build a nice,
pristine new class instance.

With JavaScript prototypes, you start with a model home (object)
that has rooms (methods). If you want a new living room, you can
just replace the old one with something in better colors. If you want
a new conservatory, then just make an extension. But rather than
building from scratch with a blueprint, you’re adapting and extend‐
ing an existing object.

With that necessary theory out of the way and the reminder that
object inheritance is useful to know but hardly ubiquitous in data‐
viz, let’s see a simple JavaScript prototype object in Example 2-5.

Example 2-5. A simple JavaScript object

var Citizen = function(name, country){
 this.name = name;
 this.country = country;
};

Citizen.prototype = {
 printDetails: function(){
 console.log('Citizen ' + this.name + ' from ' + this.country);
 }
};

var c = new Citizen('Groucho M.', 'Freedonia');

c.printDetails();
Out:
Citizen Groucho M. from Freedonia

typeof(c) # object

Basic Bridge Work | 37

http://raganwald.com/2015/05/11/javascript-classes.html

23 As of Ecmascript 6, this will change with the addition of the class keyword, a piece of
syntactic sugar generating a lot of heat and not much light right now.

JavaScript has no classes23 so object instances are built from
functions or objects.

this is an implicit reference to the calling context of the func‐
tion. For now, it behaves as you would expect and even though
it looks a little like Python’s self, the two are quite different, as
we’ll see.

The methods specified here will both override any prototypical
methods up the inheritance chain and be inherited by any
objects derived from Citizen.

new is used to create a new object, set its prototype to that of the
Citizen constructor function, and then call the Citizen con‐
structor function on the new object.

self Versus this
At first glance, it would be easy enough to assume that Python’s
self and JavaScript’s this are essentially the same, the latter being
an implicit version of the former, which is supplied to all class
instance methods. Actually, this and self are significantly differ‐
ent. Let’s use our bilingual Citizen class to demonstrate.

Python’s self is a variable supplied to each class method (you can
call it anything you like, but it’s not advisable), representing the
class instance. But this is a keyword that refers to the object calling
the method. This calling object can be different from the method’s
object instance, and JavaScript provides the call, bind, and apply
function methods to allow you to exploit this fact.

Let’s use the call method to change the calling object of a
print_details method and therefore the reference for this, used
in the method to get the citizen’s name:

var groucho = new Citizen('Groucho M.', 'Freedonia');
var harpo = new Citizen('Harpo M.', 'Freedonia');

groucho.print_details.call(harpo);

38 | Chapter 2: A Language-Learning Bridge Between Python and JavaScript

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function

24 This is another reason to use Ecmascript 5’s 'use strict;' injunction, which calls
attention to such mistakes.

Out:
"Citizen Harpo M. from Freedonia"

So JavaScript’s this is a much more malleable proxy than Python’s
self, offering more freedom but also the responsibility of tracking
calling context and, should you use it, making sure new is always
used in creating objects.24

I included Example 2-5, which shows new in JavaScript object
instantiation, because you will run into its use a fair deal. But the
syntax is already a little awkward and gets quite a bit worse when
you try to do inheritance. Ecmascript 5 introduced the Object.cre
ate method, a better way to create objects and to implement inheri‐
tance. I’d recommend using it in your own code, but new will
probably crop up in some third-party libraries.

Let’s use Object.create to create a Citizen and its Winner inheri‐
tor. To emphasize, JavaScript has many ways to do this, but
Example 2-6 shows the cleanest I have found and my personal
pattern.

Example 2-6. Prototypical inheritance with Object.create

var Citizen = {
 setCitizen: function(name, country){
 this.name = name;
 this.country = country;
 return this;
 },
 printDetails: function(){
 console.log('Citizen ' + this.name + ' from ',\
 + this.country);
 }
};

var Winner = Object.create(Citizen);

Winner.setWinner = function(name, country, category, year){
 this.setCitizen(name, country);
 this.category = category;
 this.year = year;
 return this;

Basic Bridge Work | 39

};

Winner.printDetails = function(){
 console.log('Nobel winner ' + this.name + ' from ' +
 this.country + ', category ' + this.category + ', year ' +
 this.year);
};

var albert = Object.create(Winner)
 .setWinner('Albert Einstein', 'Switzerland', 'Physics', 1921);

albert.printDetails();
Out:
Nobel winner Albert Einstein from Switzerland, category
Physics, year 1921

Citizen is now an object rather than a constructor function.
Think of this as the base house for any new buildings such as
Winner.

To reiterate, prototypical inheritance is not seen that often in Java‐
Script dataviz, particularly the 800-pound gorilla D3 with its empha‐
sis on declarative and functional patterns, with raw unencapsulated
data being used to stamp its impression on the web page.

The tricky class/prototype comparison concludes this section on
basic syntactic differences. Now let’s look at some common patterns
seen in dataviz work with Python and JS.

Differences in Practice
The syntactic differences between JS and Python are important to
know and thankfully outweighed by their syntactic similarities. The
meat and potatoes of imperative programming, loops, conditionals,
data declaration, and manipulation is much the same. This is all the
more so in the specialized domain of data processing and data visu‐
alization where the languages’ first-class functions allow common
idioms.

What follows is a less-than-comprehensive list of some important
patterns and idioms seen in Python and JavaScript, from the per‐
spective of a data visualizer. Where possible, a translation between
the two languages is given.

40 | Chapter 2: A Language-Learning Bridge Between Python and JavaScript

Method Chaining
A common JavaScript idiom is method chaining, popularized by its
most popular library, jQuery, and much used in D3. Method chain‐
ing involves returning an object from its own method in order to
call another method on the result, using dot notation:

var sel = d3.select('#viz')
 .attr('width', '600px')
 .attr('height', '400px')
 .style('background', 'lightgray');

The attr method returns the D3 selection that called it, which
is then used to call another attr method.

Method chaining is not much seen in Python, which generally advo‐
cates one statement per line in keeping with simplicity and
readability.

Enumerating a List
Often it’s useful to iterate through a list while keeping track of the
item’s index. Python has the very handy built-in enumerate function
for just this reason:

names = ['Alice', 'Bob', 'Carol']

for i, n in enumerate(names):
 print('%d: %s'%(i, n))

Out:
0: Alice
1: Bob
2: Carol

JavaScript’s list methods, such as forEach and the functional map,
reduce, and filter, supply the iterated item and its index to the
callback function:

var names = ['Alice', 'Bob', 'Carol'];

names.forEach(function(n, i){
 console.log(i + ': ' + n);
});

Out:
0: Alice
1: Bob
2: Carol

Differences in Practice | 41

Tuple Unpacking
One of the first cool tricks Python initiates come across uses tuple
unpacking to switch variables:

(a, b) = (b, a)

Note that the brackets are optional. This can be put to more practi‐
cal purpose as a way of reducing the temporary variables, such as in
a Fibonacci function:

def fibonacci(n):
 x, y = 0, 1
 for i in range(n):
 print(x)
 x, y = y, x + y

If you want to ignore one of the unpacked variables, use an
underscore:

winner = 'Albert Einstein', 'Physics', 1921, 'Swiss'

name, _, _, nationality = winner

Tuple unpacking has a slew of use cases. It is also a fundamental fea‐
ture of the language and not available in JavaScript.

Collections
One of the most useful Python “batteries” is the collections mod‐
ule. This provides some specialized container datatypes to augment
Python’s standard set. It has a deque, which provides a list-like con‐
tainer with fast appends and pops at either end; an OrderedDict,
which remembers the order entries were added; a defaultdict,
which provides a factory function to set the dictionary’s default; and
a Counter container for counting hashable objects, among others. I
find myself using the last three a lot. Here are a few examples:

from collections import Counter, defaultdict, OrderedDict

items = ['F', 'C', 'C', 'A', 'B', 'A', 'C', 'E', 'F']

cntr = Counter(items)
print(cntr)
cntr['C'] -=1
print(cntr)
Out:
Counter({'C': 3, 'A': 2, 'F': 2, 'B': 1, 'E': 1})
Counter({'A': 2, 'C': 2, 'F': 2, 'B': 1, 'E': 1})

42 | Chapter 2: A Language-Learning Bridge Between Python and JavaScript

25 My personal choice for performance reasons.

d = defaultdict(int)

for item in items:
 d[item] += 1

d
Out:
defaultdict(<type 'int'>, {'A': 2, 'C': 3, 'B': 1, 'E': 1, 'F': 2})

OrderedDict(sorted(d.items(), key=lambda i: i[1]))
Out:
OrderedDict([('B', 1), ('E', 1), ('A', 2), ('F', 2), ('C', 3)])

Sets the dictionary default to an integer, with value 0 by default.

If the item-key doesn’t exist, its value is set to the default of 0
and 1 added to that.

Gets the list of items in the dictionary d as key-value tuple pairs,
sorts using the integer value, and then creates an OrderedDict
with the sorted list.

The OrderedDict remembers the (sorted) order of the items as
they were added to it.

You can get more details on the collections module from here.

There is a recent JavaScript library that emulates the Python collec
tions module. You can find it here. As of late 2015, it is a very new
but impressive piece of work, worth checking out even if you just
want to extend your JavaScript knowledge.

If you want to replicate some of Python’s collections function
using more conventional JavaScript libraries, underscore (or its
functionally identical replacement lodash25) is a good place to start.
These libraries offer some enhanced functional programming utilit‐
ies. Let’s take a quick look at this very handy tool.

Differences in Practice | 43

https://docs.python.org/2/library/collections.html
https://github.com/seriesoftubes/pycollections.js

Underscore
Underscore is probably the most popular JavaScript library after the
ubiquitous jQuery and offers a bevy of functional programming
utilities for the JavaScript dataviz programmer. The easiest way to
use underscore is to use a content delivery network (CDN) to load it
remotely (these loads will be cached by your browser, making things
very efficient for common libraries), like so:

<script src="https://cdnjs.cloudflare.com/ajax/libs/
 underscore.js/1.8.3/underscore-min.js"></script>

Underscore has loads of useful functions. There is, for example, a
countBy method, which serves the same purpose as the Python’s col
lections counter just discussed:

var items = ['F', 'C', 'C', 'A', 'B', 'A', 'C', 'E', 'F'];

_.countBy(items)
Out:
Object {F: 2, C: 3, A: 2, B: 1, E: 1}

Now you see why the library is called underscore.

As we’ll now see, the inclusion in modern JavaScript of native func‐
tional methods (map, reduce, filter) and a forEach iterator for
arrays has made underscore slightly less indispensable, but it still
has some great utilities to augment vanilla JS. With a little chaining,
you can produce extremely terse but very powerful code. Under‐
score was my gateway drug to functional programming in Java‐
Script, and the idioms are just as addictive today. Check out
underscore’s repertoire of utilities here.

Let’s have a look at underscore in action, tackling a more involved
task:

journeys = [
 {period:'morning', times:[44, 34, 56, 31]},
 {period:'evening', times:[35, 33],},
 {period:'morning', times:[33, 29, 35, 41]},
 {period:'evening', times:[24, 45, 27]},
 {period:'morning', times:[18, 23, 28]}
];

var groups = _.groupBy(journeys, 'period');
var mTimes = _.pluck(groups['morning'], 'times');
mTimes = _.flatten(mTimes);
var average = function(l){

44 | Chapter 2: A Language-Learning Bridge Between Python and JavaScript

http://underscorejs.org/

 var sum = _.reduce(l, function(a,b){return a+b},0);
 return sum/l.length;
};
console.log('Average morning time is ' + average(mTimes));
Out:
Average morning time is 33.81818181818182

Our array of morning times arrays ([[44, 34, 56, 31], [33…]])
needs to be flattened into a a single array of numbers.

Functional Array Methods and List Comprehensions
I find myself using underscore a lot less since the addition, with
Ecmascript 5, of functional methods to JavaScript arrays. I don’t
think I’ve used a conventional for loop since then, which, given the
ugliness of JS for loops, is a very good thing.

Once you get used to processing arrays functionally, it’s hard to con‐
sider going back. Combined with JS’s anonymous functions, it
makes for very fluid, expressive programming. It’s also an area
where method chaining seems very natural. Let’s look at a highly
contrived example:

var nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

var sum = nums.filter(function(o){ return o%2 })
 .map(function(o){ return o * o})
 .reduce(function(a, b){return a+b});

console.log('Sum of the odd squares is ' + sum);

Filters the list for odd numbers (i.e., returning 1 for the modu‐
lus (%) 2 operation).

map produces a new list by applying a function to each member
(i.e., [1, 3, 5…] → [1, 9, 25…]).

reduce processes the resultant mapped list in sequence, provid‐
ing the current (in this case, summed) value (a) and the item
value (b). By default, the initial value of the first argument (a) is
0.

Python’s powerful list comprehensions can emulate the previous
example easily enough:

Differences in Practice | 45

nums = range(10)

odd_squares = [x * x for x in nums if x%2]
sum(odd_squares)
Out:
165

Python has a handy built-in range function, which can also take
a start, end, and step (e.g., range(2, 8, 2) → [2, 4, 6])

The if condition tests for oddness of x, and any numbers pass‐
ing this filter are squared and inserted into the list.

Python also has a built-in and often used sum statement.

Python’s list comprehensions can use recursive
control structures, such as applying a second
for/if expression to the iterated items.
Although this can create terse and powerful
lines of code, it goes against the grain of Python’s
readability and I discourage its use. Even simple
list comprehensions are less than intuitive and,
as much as it appeals to the leet hacker in all of
us, you risk creating incomprehensible code.

Python’s list comprehensions work well for basic filtering and map‐
ping. They do lack the convenience of JavaScript’s anonymous func‐
tions (which are fully fledged, with their own scope, control blocks,
exception handling, etc.), but there are arguments against the use of
anonymous functions. For example, they are not reusable and, being
unnamed, they make it hard to follow exceptions and debug. See
here for some persuasive arguments. Having said that, for libraries
like D3, replacing the small, throwaway anonymous functions used
to set DOM attributes and properties with named ones would be far
too onerous and would just add to the boilerplate.

Python does have functional lambda expressions, which we’ll look at
in the next section, but for full functional processing in Python by
necessity and JavaScript for best practice, we can use named func‐
tions to increase our control scope. For our simple odd-squares
example, named functions are a contrivance—but note that they
increase the first-glance readability of the list comprehension, which
becomes much more important as your functions get more complex.

46 | Chapter 2: A Language-Learning Bridge Between Python and JavaScript

http://bit.ly/1Yxkej3

26 Don’t Repeat Yourself (DRY) is a solid coding convention.

def is_odd(x):
 return x%2

def sq(x):
 return x * x

sum([sq(x) for x in l if is_odd(x)])

With JavaScript, a similar contrivance can also increase readability
and facilitate DRY code:26

var isOdd = function(x){ return x%2; };

sum = l.filter(isOdd)
...

Map, Reduce, and Filter with Python’s Lambdas
Although Python lacks anonymous functions, it does have lambdas,
which are nameless expressions that take arguments. Though lack‐
ing the bells and whistles of JavaScript’s anonymous functions, these
are a powerful addition to Python’s functional programming reper‐
toire, especially when combined with its functional methods.

Python’s functional built-ins (map, reduce, fil
ter methods, and lambda expressions) have a
checkered past. It’s no secret that the creator of
Python wanted to remove them from the lan‐
guage. The clamor of disapproval led to their
reluctant preservation. With the recent trend
toward functional programming, this looks like
a very good thing. They’re not perfect but are far
better than nothing. And given JavaScript’s
strong functional emphasis, they’re a good way
to leverage skills acquired in that language.

Python’s lambdas take a number of parameters and return an opera‐
tion on them, using a colon separator to define the function block,
in much the same way that standard Python functions only pared to
the bare essentials and with an implicit return. The following exam‐
ple shows a few lambdas employed in functional programming:

Differences in Practice | 47

from functools import reduce # if using Python 3+

nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

odds = filter(lambda x: x % 2, nums)
odds_sq = map(lambda x: x * x, odds)
reduce(lambda x, y: x + y, odds_sq)
Out:
165

Here, the reduce method provides two arguments to the
lambda, which uses them to return the expression after the
colon.

JavaScript Closures and the Module Pattern
One of the key concepts in JavaScript is that of the closure, which is
essentially a nested function declaration that uses variables declared
in an outer (but not global) scope that are kept alive after the func‐
tion is returned. Closures allow for a number of very useful pro‐
gramming patterns and are a common feature of the language.

Let’s look at possibly the most common usage of closures and one
we’ve already seen exploited in our module pattern (Example 2-2):
exposing a limited API while having access to essentially private
member variables.

A simple example of a closure is this little counter:

function Counter(inc) {
 var count = 0;
 var add = function() {
 count += inc;
 console.log('Current count: ' + count);
 }
 return add;
}

var inc2 = Counter(2);
inc2();
Out:
Current count: 2
inc2();
Out:
Current count: 4

The add function gets access to the essentially private, outer-
scope count and inc variables.

48 | Chapter 2: A Language-Learning Bridge Between Python and JavaScript

This returns an add function with the closure variables, count
(0) and inc (2).

Calling inc2 calls add, updating the closed count variable.

We can extend the Counter to add a little API. This technique is the
basis of JavaScript modules and many simple libraries. In essence, it
selectively exposes public methods while hiding private methods
and variables, which is generally seen as good practice in the pro‐
gramming world:

function Counter(inc) {
 var count = 0;
 var api = {};
 api.add = function() {
 count += inc;
 console.log('Current count: ' + count);
 }
 api.sub = function() {
 count -= inc;
 console.log('Current count: ' + count)
 }
 api.reset = function() {
 count = 0;
 console.log('Count reset to 0')
 }

 return api;
}

cntr = Counter(3);
cntr.add() // Current count: 3
cntr.add() // Current count: 6
cntr.sub() // Current count: 3
cntr.reset() // Count reset to 0

Closures have all sorts of uses in JavaScript and I’d recommend get‐
ting your head around them—you’ll see them a lot as you start
investigating other people’s code. These are three particularly good
web articles that provide a lot of good use cases for closures:

• “Getting Closure” by Mark Daggett
• “JavaScript Module Pattern: In-Depth” by Ben Cherry
• “Use Cases for JavaScript Closures” by Juriy Zaytsev

Python has closures, but they are not used nearly as much as
JavaScript’s, perhaps because of a few quirks that, though surmount‐

Differences in Practice | 49

http://markdaggett.com/blog/2013/02/25/getting-closure
http://www.adequatelygood.com/JavaScript-Module-Pattern-In-Depth.html
https://msdn.microsoft.com/en-us/magazine/ff696765.aspx

able, make for some slightly awkward code. To demonstrate,
Example 2-7 tries to replicate the previous JavaScript counter.

Example 2-7. A first-pass attempt at a Python counter closure

def get_counter(inc):
 count = 0
 def add():
 count += inc
 print('Current count: ' + str(count))
 return add

If you create a counter with get_counter (Example 2-7) and try to
run it, you’ll get an UnboundLocalError:

cntr = get_counter(2)
cntr()
Out:
...
UnboundLocalError: local variable 'count' referenced before
assignment

Interestingly, although we can read the value of count within the add
function (comment out the count += inc line to try it), attempts to
change it throw an error. This is because attempts to assign a value
to something in Python assume it is local in scope. There is no
count local to the add function and so an error is thrown.

In Python 3, we can get around the error in Example 2-7 by using
the nonlocal keyword to tell Python that count is in a nonlocal
scope:

...
def add():
 nonlocal count
 count += inc
...

In Python 2, we can use a little dictionary hack to allow mutation of
our closed variables:

def get_counter(inc):
 vars = {'count': 0}
 def add():
 vars['count'] += inc
 print('Current count: ' + str(vars['count']))
 return add

50 | Chapter 2: A Language-Learning Bridge Between Python and JavaScript

This hack works because we are not assigning a new value to vars
but are instead mutating an existing container, which is perfectly
valid even if it is out of local scope.

As you can see, with a bit of effort, JavaScripters can transfer their
closure skills to Python. The use cases are similar, but Python, being
a richer language with lots of useful batteries included, has more
options to apply to the same problem. Probably the most common
use of closures is in Python’s decorators.

Decorators are essentially function wrappers that extend the func‐
tion’s utility without having to alter the function itself. They’re a rel‐
atively advanced concept, but you can find a user-friendly
introduction on The Code Ship website.

This Is That
One JavaScript hack you’ll see a lot of is a consequence of closures
and the slippery this keyword. If you wish to refer to the outer-
scoped this in a child function, you must use a proxy because the
child’s this will be bound according to context. The convention is to
use that to refer to this. The code is less confusing than the
explanation:

function outer(bar){
 this.bar = bar;
 var that = this;
 function inner(baz){
 this.baz = baz * that.bar;
 // ...

that refers to the outer function’s this.

This concludes my cherry-picked selection of patterns and hacks
that I find myself using a lot in dataviz work. You’ll doubtless
acquire your own, but I hope these give you a leg up.

A Cheat Sheet
As a handy reference guide, Figures 2-2 to 2-7 include a set of cheat
sheets to translate basic operations between Python and JavaScript.

A Cheat Sheet | 51

http://thecodeship.com/patterns/guide-to-python-function-decorators/

Figure 2-2. Some basic syntax

Figure 2-3. Booleans

52 | Chapter 2: A Language-Learning Bridge Between Python and JavaScript

Figure 2-4. Loops and iterations

Figure 2-5. Conditionals

A Cheat Sheet | 53

Figure 2-6. Containers

Figure 2-7. Classes and prototypes

Summary
I hope this chapter has shown that JavaScript and Python have a lot
of common syntax and that most common idioms and patterns
from one of the languages can be expressed in the other without too
much fuss. The meat and potatoes of programming, iteration, con‐
ditionals, and basic data manipulation is simple in both languages,

54 | Chapter 2: A Language-Learning Bridge Between Python and JavaScript

and the translation of functions is straightforward. If you can pro‐
gram in one to any degree of competency, the threshold to entry for
the other is low. That’s the huge appeal of these simple scripting lan‐
guages, which have a lot of common heritage.

I provided a list of patterns, hacks, and idioms I find myself using
frequently in dataviz work. I’m sure this list has its idiosyncrasies,
but I’ve tried to tick the obvious boxes.

Treat this as part tutorial, part reference for the chapters to come.
Anything not covered here will be dealt with when introduced.

Summary | 55

CHAPTER 3

Reading and Writing Data
with Python

One of the fundamental skills of any data visualizer is the ability to
move data around. Whether your data is in an SQL database, a
comma-separated-value (CSV) file, or in some more esoteric form,
you should be comfortable reading the data, converting it, and writ‐
ing it into a more convenient form if need be. One of Python’s great
strengths is how easy it makes manipulating data in this way. The
focus of this chapter is to bring you up to speed with this essential
aspect of our dataviz toolchain.

This chapter is part tutorial, part reference, and sections of it will be
referred to in later chapters. If you know the fundamentals of read‐
ing and writing Python data, you can cherry-pick parts of the chap‐
ter as a refresher.

Easy Does It
I remember when I started programming back in the day (using
low-level languages like C) how awkward data manipulation was.
Reading from and writing to files was an annoying mixture of
boilerplate code, hand-rolled kludges, and the like. Reading from
databases was equally difficult, and as for serializing data, the mem‐
ories are still painful. Discovering Python was a breath of fresh air. It
wasn’t a speed demon, but opening a file was pretty much as simple
as it could be:

file = open('data.txt')

57

Back then, Python made reading from and writing to files refresh‐
ingly easy, and its sophisticated string processing made parsing the
data in those files just as easy. It even had an amazing module called
Pickle that could serialize pretty much any Python object.

In the years since, Python has added robust, mature modules to its
standard library that make dealing with CSV and JSON files, the
standard for web dataviz work, just as easy. There are also some
great libraries for interacting with SQL databases such as SQL‐
Alchemy, my thoroughly recommended go-to. The newer NoSQL
databases are also well served. MongoDB is the most popular of
these newer document-based databases, and Python’s pymongo

library, which is demonstrated later in the chapter, makes interact‐
ing with it a relative breeze.

Passing Data Around
A good way to demonstrate how to use the key data-storage libraries
is to pass a single data packet among them, reading and writing it as
we go. This will give us an opportunity to see in action the key data
formats and databases employed by data visualizers.

The data we’ll be passing around is probably the most commonly
used in web visualizations, a list of dictionary-like objects (see
Example 3-1). This dataset is transferred to the browser in JSON
form, which is, as we’ll see, easily converted from a Python
dictionary.

Example 3-1. Our target list of data objects

nobel_winners = [
 {'category': 'Physics',
 'name': 'Albert Einstein',
 'nationality': 'Swiss',
 'sex': 'male',
 'year': 1921},
 {'category': 'Physics',
 'name': 'Paul Dirac',
 'nationality': 'British',
 'sex': 'male',
 'year': 1933},
 {'category': 'Chemistry',
 'name': 'Marie Curie',
 'nationality': 'Polish',
 'sex': 'female',

58 | Chapter 3: Reading and Writing Data with Python

https://en.wikipedia.org/wiki/JSON

 'year': 1911}
]

We’ll start by creating a CSV file from the Python list shown in
Example 3-1 as a demonstration of reading (opening) and writing
system files.

The following sections assume you’re in a work directory with a
data subdirectory at hand. You can run the code from a Python
interpreter or file.

Working with System Files
In this section, we’ll create a CSV file from a Python list of diction‐
aries (Example 3-1). Typically, you would do this using the csv
module, which we’ll demonstrate after this section, so this is just a
way of demonstrating basic Python file manipulation.

First let’s open a new file, using w as a second argument to indicate
we’ll be writing data to it.

f = open('data/nobel_winners.csv', 'w')

Now we’ll create our CSV file from the nobel_winners dictionary
(Example 3-1):

cols = nobel_winners[0].keys()
cols.sort()

with open('data/nobel_winners.csv, 'w') as f:
 f.write(','.join(cols) + '\n')

 for o in nobel_winners:
 row = [str(o[col]) for col in cols]
 f.write(','.join(row) + '\n')

Gets our data columns from the keys of the first object (i.e.,
['category', 'name', ...]).

Sorts the columns in alphabetical order.

Uses Python’s with statement to guarantee the file is closed on
leaving the block or if any exceptions occur.

join creates a concatenated string from a list of strings (cols
here), joined by the initial string (i.e., “category,name,..”).

Working with System Files | 59

Creates a list using the column keys to the objects in nobel_win
ners.

Now that we’ve created our CSV file, let’s use Python to read it and
make sure everything is correct:

with open('data/nobel_winners.csv') as f:
 for line in f.readlines():
 print(line),

Out:
category,name,nationality,sex,year
Physics,Albert Einstein,Swiss,male,1921
Physics,Paul Dirac,British,male,1933
Chemistry,Marie Curie,Polish,female,1911

Adding a comma after the print function call inhibits the addi‐
tion of an unnecessary newline.

As the previous output shows, our CSV file is well formed. Let’s use
Python’s built-in csv module to first read it and then create a CSV
file the right way.

CSV, TSV, and Row-Column Data Formats
Comma-separated values (CSV) or their tab-separated cousins
(TSV) are probably the most ubiquitous file-based data formats and,
as a data visualizer, these will often be the forms you’ll receive to
work your magic with. Being able to read and write CSV files and
their various quirky variants, such as pipe- or semicolon-separated
or those using ` in place of the standard double quotes, is a funda‐
mental skill; Python’s csv module is capable of doing pretty much all
your heavy lifting here. Let’s put it through its paces reading and
writing our nobel_winners data:

nobel_winners = [
 {'category': 'Physics',
 'name': 'Albert Einstein',
 'nationality': 'Swiss',
 'sex': 'male',
 'year': 1921},
 ...
]

Writing our nobel_winners data (see Example 3-1) to a CSV file is a
pretty simple affair. csv has a dedicated DictWriter class that will

60 | Chapter 3: Reading and Writing Data with Python

1 I recommend using JSON over CSV as your preferred data format.

turn our dictionaries into CSV rows. The only piece of explicit
bookkeeping we have to do is write a header to our CSV file, using
the keys of our dictionaries as fields (i.e., “category, name, national‐
ity, sex”):

import csv

with open('data/nobel_winners.csv', 'wb') as f:
 fieldnames = nobel_winners[0].keys()
 fieldnames.sort()
 writer = csv.DictWriter(f, fieldnames=fieldnames)
 writer.writeheader()
 for w in nobel_winners:
 writer.writerow(w)

You need to explicitly tell the writer which fieldnames (in this
case, the 'category', 'name', etc., keys) to use.

We’ll sort the CSV header fields alphabetically for readability.

Writes the CSV-file header (“category,name,…”).

You’ll probably be reading CSV files more often than writing them.1

Let’s read back the nobel_winners.csv file we just wrote.

If you just want to use csv as a superior and eminently adaptable file
line-reader, a couple of lines will produce a handy iterator, which
can deliver your CSV rows as lists of strings:

with open('data/nobel_winners.csv') as f:
 reader = csv.reader(f)
 for row in reader:
 print(row)

Out:
['category', 'name', 'nationality', 'sex', 'year']
['Physics', 'Albert Einstein', 'Swiss', 'male', '1921']
['Physics', 'Paul Dirac', 'British', 'male', '1933']
['Chemistry', 'Marie Curie', 'Polish', 'female', '1911']

Iterates over the reader object, consuming the lines in the file.

Note that the numbers are read in string form. If you want to
manipulate them numerically, you’ll need to convert any numeric
columns to their respective type, which is integer years in this case.

CSV, TSV, and Row-Column Data Formats | 61

A more convenient way to consume CSV data is to convert the rows
into Python dictionaries. This record form is also the one we are
using as our conversion target (a list of dicts). csv has a handy
DictReader for just this purpose:

import csv

with open('data/nobel_winners.csv') as f:
 reader = csv.DictReader(f)
 nobel_winners = list(reader)

nobel_winners

Out:
[{'category': 'Physics', 'nationality': 'Swiss', \
 'year': '1921', 'name': 'Albert Einstein', 'sex': 'male'},
{'category': 'Physics', 'nationality': 'British', \
 'year': '1933', 'name': 'Paul Dirac', 'sex': 'male'},
{'category': 'Chemistry', 'nationality': 'Polish', \
 'year': '1911', 'name': 'Marie Curie', 'sex': 'female'}]

Inserts all of the reader items into a list.

As the output shows, we just need to cast the dicts year attributes to
integers to make nobel_winners conform to the chapter’s target data
(Example 3-1), thus:

for w in nobel_winners:
 w['year'] = int(w['year'])

The csv readers don’t infer datatypes from your file, and instead
interpret everything as a string. Pandas, Python’s preeminent data-
hacking library, will try to guess the correct type of the data col‐
umns, usually successfully. We’ll see this in action in the later
dedicated Pandas chapters.

csv has a few useful arguments to help parse members of the CSV
family:

dialect

By default, 'excel'; specifies a set of dialect-specific parame‐
ters. excel-tab is a sometimes used alternative.

delimiter

Files are usually comma-separated, but they could use |, : or
' ' instead.

62 | Chapter 3: Reading and Writing Data with Python

quotechar

By default, double quotes are used, but you occasionally find |
or ` instead.

You can find the full set of csv parameters in the online Python
docs.

Now that we’ve successfully written and read our target data using
the csv module, let’s pass on our CSV-derived nobel_winners dict
to the json module.

JSON
In this section we’ll write and read our nobel_winners data using
Python’s json module. Let’s remind ourselves of the data we’re using:

nobel_winners = [
 {'category': 'Physics',
 'name': 'Albert Einstein',
 'nationality': 'Swiss',
 'sex': 'male',
 'year': 1921},
 ...
]

For data primitives such as strings, integers, and floats, Python dic‐
tionaries are easily saved (or dumped, in the JSON vernacular) into
JSON files, using the json module. The dump method takes a Python
container and a file pointer, saving the former to the latter:

import json

with open('data/nobel_winners.json', 'w') as f:
 json.dump(nobel_winners, f)

open('data/nobel_winners.json').read()

Out: '[{"category": "Physics", "name": "Albert Einstein",
"sex": "male", "person_data": {"date of birth": "14th March
1879", "date of death": "18th April 1955"}, "year": 1921,
"nationality": "Swiss"}, {"category": "Physics",
"nationality": "British", "year": 1933, "name": "Paul Dirac",
"sex": "male"}, {"category": "Chemistry", "nationality":
"Polish", "year": 1911, "name": "Marie Curie", "sex":
"female"}]'

Reading (or loading) a JSON file is just as easy. We just pass the
opened JSON file to the json module’s load method:

JSON | 63

https://docs.python.org/2/library/csv.html#csv-fmt-params
https://docs.python.org/2/library/csv.html#csv-fmt-params

import json

with open('data/nobel_winners.json') as f:
 nobel_winners = json.load(f)

nobel_winners
Out:
[{u'category': u'Physics',
 u'name': u'Albert Einstein',
 u'nationality': u'Swiss',
 u'sex': u'male',
 u'year': 1921},
...

Note that, unlike in our CSV file conversion, the integer type of
the year column is preserved.

json has the methods loads and dumps, which are counterparts to
the file access methods, loading JSON strings to Python containers
and dumping Python containers to JSON strings.

Dealing with Dates and Times
Trying to dump a datetime object to json produces a TypeError:

from datetime import datetime

json.dumps(datetime.now())
Out:
...
TypeError: datetime.datetime(2015, 9, 13, 10, 25, 52, 586792)
is not JSON serializable

When serializing simple datatypes such as strings or numbers, the
default json encoders and decoders are fine. But for more special‐
ized data such as dates, you will need to do your own encoding and
decoding. This isn’t as hard as it sounds and quickly becomes rou‐
tine. Let’s first look at encoding your Python datetimes into sensible
JSON strings.

The easiest way to encode Python data containing datetimes is to
create a custom encoder like the one shown in Example 3-2, which
is provided to the json.dumps method as a cls argument. This
encoder is applied to each object in your data in turn and converts
dates or datetimes to their ISO-format string (see “Dealing with
Dates, Times, and Complex Data” on page 82).

64 | Chapter 3: Reading and Writing Data with Python

https://docs.python.org/2/library/datetime.html#datetime-objects

2 The Python module dateutil has a parser that will parse most dates and times sensi‐
bly, and might be a good basis for this.

Example 3-2. Encoding a Python datetime to JSON

import datetime
from dateutil import parser
import json

class JSONDateTimeEncoder(json.JSONEncoder):
 def default(self, obj):
 if isinstance(obj, (datetime.date, datetime.datetime)):
 return obj.isoformat()
 else:
 return json.JSONEncoder.default(self, obj)

def dumps(obj):
 return json.dumps(obj, cls=JSONDateTimeEncoder)

Subclasses a JSONEncoder in order to create customized date-
handling one.

Tests for a datetime object and if true, returns the isoformat of
any dates or datetimes (e.g., 2015-09-13T10:25:52.586792).

Uses the cls argument to set a custom date encoder.

Let’s see how our new dumps method copes with some datetime
data:

now_str = dumps({'time': datetime.datetime.now()})
now_str
Out:
'{"time": "2015-09-13T10:25:52.586792"}'

The time field is correctly converted into an ISO-format string,
ready to be decoded into a JavaScript Date object (see “Dealing with
Dates, Times, and Complex Data” on page 82 for a demonstration).

While you could write a generic decoder to cope with date strings in
arbitrary JSON files,2 it’s probably not advisable. Date strings come
in so many weird and wonderful varieties that this is a job best done
by hand on what is pretty much always a known dataset.

JSON | 65

The venerable strptime method, part of the datetime.datetime
package, is good for the job of turning a time string in a known for‐
mat into a Python datetime instance:

In [0]: from datetime import datetime

In [1]: time_str = '2012/01/01 12:32:11'

In [2]: dt = datetime.strptime(time_str, '%Y/%m/%d %H:%M:%S')

In [3]: dt
Out[2]: datetime.datetime(2012, 1, 1, 12, 32, 11)

strptime tries to match the time string to a format string using
various directives such as %Y (year with century) and %H (hour as
a zero-padded decimal number). If successful, it creates a
Python datetime instance. See the Python docs for a full list of
the directives available.

If strptime is fed a time string that does not match its format, it
throws a handy ValueError:

dt = datetime.strptime('1/2/2012 12:32:11', '%Y/%m/%d %H:%M:%S')

ValueError Traceback (most recent call last)
<ipython-input-111-af657749a9fe> in <module>()
----> 1 dt = datetime.strptime('1/2/2012 12:32:11',\
 '%Y/%m/%d %H:%M:%S')
...
ValueError: time data '1/2/2012 12:32:11' does not match
 format '%Y/%m/%d %H:%M:%S'

So to convert date fields of a known format into datetimes for a
data list of dictionaries, you could do something like this:

for d in data:
 try:
 d['date'] = datetime.strptime(d['date'],\
 '%Y/%m/%d %H:%M:%S')
 except ValueError:
 print('Oops! - invalid date for ' + repr(d))

Now that we’ve dealt with the two most popular data file formats,
let’s shift to the big guns and see how to read our data from and
write our data to SQL and NoSQL databases.

66 | Chapter 3: Reading and Writing Data with Python

https://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior

SQL
For interacting with an SQL database, SQLAlchemy is the most pop‐
ular and, in my opinion, best Python library. It allows you to use raw
SQL instructions if speed and efficiency is an issue, but also provides
a powerful object-relational mapping (ORM) that allows you to
operate on SQL tables using a high-level, Pythonic API, treating
them essentially as Python classes.

Reading and writing data using SQL while allowing the user to treat
that data as a Python container is a complicated process, and though
SQLAlchemy is far more user-friendly than a low-level SQL engine,
it is still a fairly complex library. I’ll cover the basics here, using our
data as a target, but encourage you to spend a little time reading
some of the rather excellent documentation on SQLAlchemy. Let’s
remind ourselves of the nobel_winners dataset we’re aiming to
write and read:

nobel_winners = [
 {'category': 'Physics',
 'name': 'Albert Einstein',
 'nationality': 'Swiss',
 'sex': 'male',
 'year': 1921},
 ...
]

Let’s first write our target data to an SQLite file using SQLAlchemy,
starting by creating the database engine.

Creating the Database Engine
The first thing you need to do when starting an SQLAlchemy ses‐
sion is to create a database engine. This engine will establish a con‐
nection with the database in question and perform any conversions
needed to the generic SQL instructions generated by SQLAlchemy
and the data being returned.

There are engines for pretty much every popular database, as well as
a memory option, which holds the database in RAM, allowing fast

SQL | 67

http://www.sqlalchemy.org/library.html#reference

3 On a cautionary note, it is probably a bad idea to use different database configurations
for testing and production.

4 See details on SQLAlchemy of this lazy initialization.

access for testing.3 The great thing about these engines is that they
are interchangeable, which means you could develop your code
using the convenient file-based SQLite database and then switch
during production to something a little more industrial, such as
Postgresql, by changing a single config string. Check SQLAlchemy
for the full list of engines available.

The form for specifying a database URL is:

dialect+driver://username:password@host:port/database

So, to connect to a 'nobel_prize' MySQL database running on
localhost requires something like the following. Note that cre
ate_engine does not actually make any SQL requests at this point,
but merely sets up the framework for doing so.4

engine = create_engine(\
 'mysql://kyran:mypsswd@localhost/nobel_prize')

We’ll use a file-based SQLite database, setting the echo argument to
True, which will output any SQL instructions generated by SQL‐
Alchemy. Note the use of three backslashes after the colon:

from sqlalchemy import create_engine

engine = create_engine(\
 'sqlite:///data/nobel_prize.db', echo=True)

SQLAlchemy offers various ways to engage with databases, but I rec‐
ommend using the more recent declarative style unless there are
good reasons to go with something more low-level and fine-grained.
In essence, with declarative mapping, you subclass your Python
SQL-table classes from a base, and SQLAlchemy introspects their
structure and relationships. See SQLAlchemy for more details.

Defining the Database Tables
We first create a Base class using declarative_base. This base will
be used to create table classes, from which SQLAlchemy will create
the database’s table schemas. You can use these table classes to inter‐
act with the database in a fairly Pythonic fashion:

68 | Chapter 3: Reading and Writing Data with Python

http://docs.sqlalchemy.org/en/latest/core/engines.html
http://docs.sqlalchemy.org/en/rel_1_0/core/engines.html
http://bit.ly/1tu8qlU

5 This assumes the database doesn’t already exist. If it does, Base will be used to create
new insertions and to interpret retrievals.

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

Note that most SQL libraries require you to formally define table
schemas. This is in contrast to such schema-less NoSQL variants as
MongoDB. We’ll take a look at the Dataset library later in this chap‐
ter, which enables schemaless SQL.

Using this Base, we define our various tables—in our case, a single
Winner table. Example 3-3 shows how to subclass Base and use
SQLAlchemy’s datatypes to define a table schema. Note the __table
name__ member, which will be used to name the SQL table and as a
keyword to retrieve it, and the optional custom __repr__ method,
which will be used when printing a table row.

Example 3-3. Defining an SQL database table

from sqlalchemy import Column, Integer, String, Enum
// ...

class Winner(Base):
 __tablename__ = 'winners'

 id = Column(Integer, primary_key=True)
 name = Column(String)
 category = Column(String)
 year = Column(Integer)
 nationality = Column(String)
 sex = Column(Enum('male', 'female'))

 def __repr__(self):
 return "<Winner(name='%s', category='%s', year='%s')>"\
 %(self.name, self.category, self.year)

Having declared our Base subclass in Example 3-3, we supply its met
adata create_all method with our database engine to create our
database.5 Because we set the echo argument to True when creating
the engine, we can see the SQL instructions generated by SQL‐
Alchemy from the command line:

Base.metadata.create_all(engine)

SQL | 69

INFO:sqlalchemy.engine.base.Engine SELECT CAST('test plain
returns' AS VARCHAR(60)) AS anon_1
...
INFO sqlalchemy.engine.base.Engine
CREATE TABLE winners (
 id INTEGER NOT NULL,
 name VARCHAR,
 category VARCHAR,
 year INTEGER,
 nationality VARCHAR,
 sex VARCHAR(6),
 PRIMARY KEY (id),
 CHECK (sex IN ('male', 'female'))
)
...
INFO:sqlalchemy.engine.base.Engine:COMMIT

With our new winners table declared, we can start adding winner
instances to it.

Adding Instances with a Session
Now that we have created our database, we need a session to interact
with:

from sqlalchemy.orm import sessionmaker

Session = sessionmaker(bind=engine)
session = Session()

We can now use our Winner class to create instances and table rows
and add them to the session:

albert = Winner(**nobel_winners[0])
session.add(albert)
session.new
Out:
IdentitySet([<Winner(name='Albert Einstein', category='Physics',
 year='1921')>])

Python’s handy ** operator unpacks our first nobel_winners
member into key-value pairs: (name='Albert Einstein', cate
gory='Physics'...).

new is the set of any items that have been added to this session.

Note that all database insertions and deletions take place in Python.
It’s only when we use the commit method that the database is altered.

70 | Chapter 3: Reading and Writing Data with Python

Use as few commits as possible, allowing SQL‐
Alchemy to work its magic behind the scenes.
When you commit, your various database
manipulations should be summarized by SQL‐
Alchemy and communicated in an efficient fash‐
ion. Commits involve establishing a database
handshake and negotiating transactions, which
is often a slow process and one you want to limit
as much as possible, leveraging SQLAlchemy’s
bookkeeping abilities to full advantage.

As the new method shows, we have added a Winner to the session.
We can remove the object using expunge, leaving an empty Identi
tySet:

session.expunge(albert)
session.new
Out:
IdentitySet([])

Remove the instance from the session (there is an expunge_all
method that removes all new objects added to the session).

At this point, no database insertions or deletions have taken place.
Let’s add all the members of our nobel_winners list to the session
and commit them to the database:

winner_rows = [Winner(**w) for w in nobel_winners]
session.add_all(winner_rows)
session.commit()
Out:
INFO:sqlalchemy.engine.base.Engine:BEGIN (implicit)
...
INFO:sqlalchemy.engine.base.Engine:INSERT INTO winners (name,
category, year, nationality, sex) VALUES (?, ?, ?, ?, ?)
INFO:sqlalchemy.engine.base.Engine:(u'Albert Einstein',
u'Physics', 1921, u'Swiss', u'male')
...
INFO:sqlalchemy.engine.base.Engine:COMMIT

Now that we’ve committed our nobel_winners data to the database,
let’s see what we can do with it and how to recreate the target list in
Example 3-1.

SQL | 71

Querying the Database
To access data, you use the session’s query method, the result of
which can be filtered, grouped, and intersected, allowing the full
range of standard SQL data retrieval. You can check out available
querying methods in the SQLAlchemy docs. For now, I’ll quickly
run through some of the most common queries on our Nobel
dataset.

Let’s first count the number of rows in our winners’ table:

session.query(Winner).count()
Out:
3

Next, let’s retrieve all Swiss winners:

result = session.query(Winner).filter_by(nationality='Swiss')
list(result)
Out:
[<Winner(name='Albert Einstein', category='Physics',\
 year='1921')>]

filter_by uses keyword expressions; its SQL expressions coun‐
terpart is filter—for example, filter(Winner.nationality
== Swiss).

Now let’s get all non-Swiss Physics winners:

result = session.query(Winner).filter(\
 Winner.category == 'Physics', \
 Winner.nationality != 'Swiss')
list(result)
Out:
[<Winner(name='Paul Dirac', category='Physics', year='1933')>]

Here’s how to get a row based on ID number:

session.query(Winner).get(3)
Out:
<Winner(name='Marie Curie', category='Chemistry', year='1911')>

Now let’s retrieve winners ordered by year:

res = session.query(Winner).order_by('year')
list(res)
Out:
[<Winner(name='Marie Curie', category='Chemistry',\
year='1911')>,
 <Winner(name='Albert Einstein', category='Physics',\

72 | Chapter 3: Reading and Writing Data with Python

http://docs.sqlalchemy.org/en/rel_1_0/orm/query.html

year='1921')>,
 <Winner(name='Paul Dirac', category='Physics', year='1933')>]

To reconstruct our target list requires a little effort converting the
Winner objects returned by our session query into Python dicts.
Let’s write a little function to create a dict from an SQLAlchemy
class. We’ll use a little table introspection to get the column labels
(see Example 3-4).

Example 3-4. Converts an SQLAlchemy instance to a dict

def inst_to_dict(inst, delete_id=True):
 dat = {}
 for column in inst.__table__.columns:
 dat[column.name] = getattr(inst, column.name)
 if delete_id:
 dat.pop('id')
 return dat

Accesses the instance’s table class to get a list of column objects.

If delete_id is true, remove the SQL primary ID field.

We can use Example 3-4 to reconstruct our nobel_winners target
list:

winner_rows = session.query(Winner)
nobel_winners = [inst_to_dict(w) for w in winner_rows]
nobel_winners
Out:
[{'category': u'Physics',
 'name': u'Albert Einstein',
 'nationality': u'Swiss',
 'sex': u'male',
 'year': 1921},
 ...
]

You can update database rows easily by changing the property of
their reflected objects:

marie = session.query(Winner).get(3)
marie.nationality = 'French'
session.dirty
Out:
IdentitySet([<Winner(name='Marie Curie', category='Chemistry',
year='1911')>])

Fetches Marie Curie, nationality Polish.

SQL | 73

dirty shows any changed instances not yet committed to the
database.

Let’s commit marie’s changes and check that her nationality has
changed from Polish to French:

session.commit()
Out:
INFO:sqlalchemy.engine.base.Engine:UPDATE winners SET
nationality=? WHERE winners.id = ?
INFO:sqlalchemy.engine.base.Engine:('French', 3)
...

session.dirty
Out:
IdentitySet([])

session.query(Winner).get(3).nationality
Out:
'French'

In addition to updating database rows, you can delete the results of a
query:

session.query(Winner).filter_by(name='Albert Einstein').delete()
Out:
INFO:sqlalchemy.engine.base.Engine:DELETE FROM winners WHERE
winners.name = ?
INFO:sqlalchemy.engine.base.Engine:('Albert Einstein',)
1

list(session.query(Winner))
Out:
[<Winner(name='Paul Dirac', category='Physics', year='1933')>,
 <Winner(name='Marie Curie', category='Chemistry',\
 year='1911')>]

You can also drop the whole table if required, using the declarative
class’s __table__ attribute:

Winner.__table__.drop(engine)

In this section, we’ve dealt with a single winners table, without any
foreign keys or relationship to any other tables, akin to a CSV or
JSON file. SQLAlchemy adds the same level of convenience in deal‐
ing with many-to-one, one-to-many, and other database table rela‐
tionships as it does to basic querying using implicit joins, by
supplying the query method with more than one table class or

74 | Chapter 3: Reading and Writing Data with Python

6 Dataset’s official motto is “databases for lazy people.” It is not part of the standard Ana‐
conda package, so you’ll want to install it using pip from the command line: $ pip
install dataset.

explicitly using the query’s join method. Check out the examples in
the SQLAlchemy docs for more details.

Easier SQL with Dataset
One library I’ve found myself using a fair deal recently is Dataset, a
module designed to make working with SQL databases a little easier
and more Pythonic than existing powerhouses like SQLAlchemy.6

Dataset tries to provide the same degree of convenience you get
when working with schema-less NoSQL databases such as Mon‐
goDB by removing a lot of the formal boilerplate, such as schema
definitions, which are demanded by the more conventional libraries.
Dataset is built on top of SQLAlchemy, which means it works with
pretty much all major databases and can exploit the power, robust‐
ness, and maturity of that best-of-breed library. Let’s see how it deals
with reading and writing our target dataset (from Example 3-1).

Let’s use the SQLite nobel_prize.db database we’ve just created to put
Dataset through its paces. First we connect to our SQL database,
using the same URL/file format as SQLAlchemy:

import dataset

db = dataset.connect('sqlite:///data/nobel_prize.db')

To get our list of winners, we grab a table from our db database,
using its name as a key, and then use the find method without argu‐
ments to return all winners:

wtable = db['winners']
winners = wtable.find()
winners = list(winners)
winners
Out:
[OrderedDict([(u'id', 1), (u'name', u'Albert Einstein'),
 (u'category', u'Physics'), (u'year', 1921), (u'nationality',
 u'Swiss'), (u'sex', u'male')]), OrderedDict([(u'id', 2),
 (u'name', u'Paul Dirac'), (u'category', u'Physics'),
 (u'year', 1933), (u'nationality', u'British'), (u'sex',
 u'male')]), OrderedDict([(u'id', 3), (u'name', u'Marie
 Curie'), (u'category', u'Chemistry'), (u'year', 1911),
 (u'nationality', u'Polish'), (u'sex', u'female')])]

SQL | 75

http://docs.sqlalchemy.org/en/rel_1_0/orm/tutorial.html#querying-with-joins
http://docs.sqlalchemy.org/en/rel_1_0/orm/tutorial.html#querying-with-joins
https://dataset.readthedocs.org/en/latest/

7 See this documentation for further details of how to use transactions to group updates.

Note that the instances returned by Dataset’s find method are Order
edDicts. These useful containers are an extension of Python’s dict
class and behave just like dictionaries except that they remember the
order in which items were inserted, meaning you can guarantee the
result of iteration, pop the last item inserted, and more. This is a
very handy additional functionality.

One of the most useful Python “batteries” for
data-mungers is collections, which is where
Dataset’s OrderedDicts come from. The
defaultdict and Counter classes are particu‐
larly useful. Check out what’s available in the
Python docs.

Let’s recreate our winners table with Dataset, first dropping the
existing one:

wtable = db['winners']
wtable.drop()

wtable = db['winners']
wtable.find()
Out:
[]

To recreate our dropped winners table, we don’t need to define a
schema as with SQLAlchemy (see “Defining the Database Tables” on
page 68). Dataset will infer that from the data we add, doing all the
SQL creation implicitly. This is the kind of convenience one is used
to when working with collection-based NoSQL databases. Let’s use
our nobel_winners dataset (Example 3-1) to insert some winner
dictionaries. We use a database transaction and the with statement
to efficiently insert our objects and then commit them.7

with db as tx:
 for w in nobel_winners:
 tx['winners'].insert(w)

Use the with statement to guarantee the transaction tx is com‐
mitted to the database.

Let’s check that everything has gone well:

76 | Chapter 3: Reading and Writing Data with Python

https://dataset.readthedocs.org/en/latest/quickstart.html#using-transactions
https://docs.python.org/2/library/collections.html

list(db['winners'].find())
Out:
[OrderedDict([(u'id', 1), (u'name', u'Albert Einstein'),
(u'category', u'Physics'), (u'year', 1921), (u'nationality',
u'Swiss'), (u'sex', u'male')]),
...
]

The winners have been correctly inserted and their order of inser‐
tion preserved by the OrderedDict.

Dataset is great for basic SQL-based work, particularly retrieving
data you might wish to process or visualize. For more advanced
manipulation, it allows you to drop down into SQLAlchemy’s core
API using the query method.

On top of its huge convenience, Dataset has a freeze method that is
a great asset to budding data visualizers. freeze takes the result of
an SQL query and turns it into a JSON or CSV file, which is a very
convenient way to start playing around with the data with Java‐
Script/D3:

winners = db['winners'].find()
dataset.freeze(winners, format='csv', \
 filename='data/nobel_winners_ds.csv')

open('data/nobel_winners_ds.csv').read()
Out:
'id,name,category,year,nationality,sex\r\n
1,Albert Einstein,Physics,1921,Swiss,male\r\n
2,Paul Dirac,Physics,1933,British,male\r\n
3,Marie Curie,Chemistry,1911,Polish,female\r\n'

Now that we’ve covered the basics of working with SQL databases,
let’s see how Python makes working with the most popular NoSQL
database just as painless.

MongoDB
Document-centric datastores like MongoDB offer a lot of conve‐
nience to data wranglers. As with all tools, there are good and bad
use cases for NoSQL databases. If you have data that has already
been refined and processed and don’t anticipate needing SQL’s pow‐
erful query language based on optimized table joins, MongoDB will
probably prove easier to work with. MongoDB is a particularly good
fit for web dataviz because it uses binary JSON (BSON) as its data

MongoDB | 77

format. An extension of JSON, BSON can deal with binary data and
datetime objects, and plays very nicely with JavaScript.

Let’s remind ourselves of the target dataset we’re aiming to write and
read:

nobel_winners = [
 {'category': 'Physics',
 'name': 'Albert Einstein',
 'nationality': 'Swiss',
 'sex': 'male',
 'year': 1921},
 ...
]

Creating a MongoDB collection with Python is the work of a few
lines:

from pymongo import MongoClient

client = MongoClient()
db = client.nobel_prize
coll = db.winners

Creates a Mongo client, using the default host and ports.

Creates or accesses the nobel_prize database.

If a winners collection exists, this will retrieve it; otherwise (as in
our case), it creates it.

Using Constants for MongoDB Access
Accessing and creating a MongoDB database with Python involves
the same operation, using dot notation and square-bracket key
access:

db = client.nobel_prize
db = client['nobel_prize']

This is all very convenient, but it means a single spelling mistake,
such as noble_prize, could both create an unwanted database and
cause future operations to fail to update the correct one. For this
reason, I advise using constant strings to access your MongoDB
databases and collections:

78 | Chapter 3: Reading and Writing Data with Python

DB_NOBEL_PRIZE = 'nobel_prize'
COLL_WINNERS = 'winners'

db = client[DB_NOBEL_PRIZE]
coll = db[COLL_WINNERS]

MongoDB databases run on localhost port 27017 by default but
could be anywhere on the Web. They also take an optional username
and password. Example 3-5 shows how to create a simple utility
function to access our database, with standard defaults.

Example 3-5. Accessing a MongoDB database

from pymongo import MongoClient

def get_mongo_database(db_name, host='localhost',\
 port=27017, username=None, password=None):
 """ Get named database from MongoDB with/out authentication """
 # make Mongo connection with/out authentication
 if username and password:
 mongo_uri = 'mongodb://%s:%s@%s/%s'%\
 (username, password, host, db_name)
 conn = MongoClient(mongo_uri)
 else:
 conn = MongoClient(host, port)

 return conn[db_name]

We specify the database name in the MongoDB URI (Uniform
Resource Identifier) as the user may not have general privileges
for the database.

We can now create a Nobel Prize database and add our target dataset
(Example 3-1). Let’s first get a winners collection, using the string
constants for access:

db = get_mongo_database(DB_NOBEL_PRIZE)
coll = db[COLL_WINNERS]

Inserting our Nobel Prize dataset is then as easy as can be:

coll.insert(nobel_winners)
Out:
[ObjectId('55f8326f26a7112e547879d4'),
 ObjectId('55f8326f26a7112e547879d5'),
 ObjectId('55f8326f26a7112e547879d6')]

MongoDB | 79

8 One of the cool things about MongoDB is that the ObjectIds are generated on the cli‐
ent side, removing the need to quiz the database for them.

The resulting array of ObjectIds can be used for future retrieval, but
MongoDB has already left its stamp on our nobel_winners list,
adding a hidden id property:8

nobel_winners
Out:
[{'_id': ObjectId('55f8326f26a7112e547879d4'),
 'category': u'Physics',
 'name': u'Albert Einstein',
 'nationality': u'Swiss',
 'sex': u'male',
 'year': 1921},
 ...
]

MongoDB’s ObjectIds have quite a bit of hidden
functionality, being a lot more than a simple
random identifier. You can, for example, get the
generation time of the ObjectId, which gives
you access to a handy timestamp:

import bson
oid = bson.ObjectId()
oid.generation_time
Out: datetime.datetime(2015, 11, 4, 15, 43, 23...

Find the full details in the MongoDB documen‐
tation.

Now that we’ve got some items in our winners collection, MongoDB
makes finding them very easy, with its find method taking a dictio‐
nary query:

res = coll.find({'category':'Chemistry'})
list(res)
Out:
[{u'_id': ObjectId('55f8326f26a7112e547879d6'),
 u'category': u'Chemistry',
 u'name': u'Marie Curie',
 u'nationality': u'Polish',
 u'sex': u'female',
 u'year': 1911}]

80 | Chapter 3: Reading and Writing Data with Python

http://bit.ly/1QbOBKE
http://bit.ly/1QbOBKE

There are a number of special dollar-prefixed operators that allow
for sophisticated querying. Let’s find all the winners after 1930 using
the $gt (greater-than) operator:

res = coll.find({'year': {'$gt': 1930}})
list(res)
Out:
[{u'_id': ObjectId('55f8326f26a7112e547879d5'),
 u'category': u'Physics',
 u'name': u'Paul Dirac',
 u'nationality': u'British',
 u'sex': u'male',
 u'year': 1933}]

You can also use Boolean expression, for instance, to find all win‐
ners after 1930 or all female winners:

res = coll.find({'$or':[{'year': {'$gt': 1930}},\
{'sex':'female'}]})
list(res)
Out:
[{u'_id': ObjectId('55f8326f26a7112e547879d5'),
 u'category': u'Physics',
 u'name': u'Paul Dirac',
 u'nationality': u'British',
 u'sex': u'male',
 u'year': 1933},
 {u'_id': ObjectId('55f8326f26a7112e547879d6'),
 u'category': u'Chemistry',
 u'name': u'Marie Curie',
 u'nationality': u'Polish',
 u'sex': u'female',
 u'year': 1911}]

You can find the full list of available query expressions in the Mon‐
goDB documentation.

As a final test, let’s turn our new winners collection back into a
Python list of dictionaries. We’ll create a utility function for the task:

def mongo_coll_to_dicts(dbname='test', collname='test',\
 query={}, del_id=True, **kw):

 db = get_mongo_database(dbname, **kw)
 res = list(db[collname].find(query))

 if del_id:
 for r in res:
 r.pop('_id')

 return res

MongoDB | 81

http://bit.ly/1Yxn5c1
http://bit.ly/1Yxn5c1

9 To get the actual local time from UTC, you can store a time zone offset or, better still,
derive it from a geocoordinate; this is because time zones do not follow lines of longi‐
tude very exactly.

An empty query dict {} will find all documents in the collec‐
tion. del_id is a flag to remove MongoDB’s ObjectIds from the
items by default.

We can now create our target dataset:

mongo_coll_to_dicts(DB_NOBEL_PRIZE, COLL_WINNERS)
Out:
[{u'category': u'Physics',
 u'name': u'Albert Einstein',
 u'nationality': u'Swiss',
 u'sex': u'male',
 u'year': 1921},
 ...
]

MongoDB’s schema-less databases are great for fast prototyping in
solo work or small teams. There will probably come a point, particu‐
larly with large code bases, when a formal schema becomes a useful
reference and sanity check; and when you are choosing a data
model, the ease with which document forms can be adapted is a
bonus. Being able to pass Python dictionaries as queries to
PyMongo and having access to client-side generated ObjectIds are a
couple of other conveniences.

We’ve now passed the nobel_winners data in Example 3-1 through
all our required file formats and databases. Let’s consider the special
case of dealing with dates and times before summing up.

Dealing with Dates, Times, and Complex Data
The ability to deal comfortably with dates and times is fundamental
to dataviz work but can be quite tricky. There are many ways to rep‐
resent a date or datetime as a string, each one requiring a separate
encoding or decoding. For this reason it’s good to settle on one for‐
mat in your own work and encourage others to do the same. I rec‐
ommend using the International Standard Organization (ISO) 8601
time format as your string representation for dates and times, and
using the Coordinated Universal Time (UTC) form.9 Here’s a few
examples of ISO 8601 date and datetime strings:

82 | Chapter 3: Reading and Writing Data with Python

http://bit.ly/1OcC731
http://bit.ly/1OcC731
http://bit.ly/1rtmDOT

2015-09-23 A date (Python/C format code '%Y-%m-%d')

2015-09-23T16:32:35Z A UTC (Z after time) date and time ('T%H:%M:%S')

2015-09-23T16:32+02:00 A positive two-hour (+02:00) offset from UTC (e.g., Central European
Time)

Note the importance of being prepared to deal with different time
zones. These are not always on lines of longitude (see Wikipedia’s
Time Zone entry), and often the best way to derive an accurate time
is by using UTC time plus a geographic location.

ISO 8601 is the standard used by JavaScript and is easy to work with
in Python. As web data visualizers, our key concern is in creating a
string representation that can be passed between Python and Java‐
Script using JSON and encoded and decoded easily at both ends.

Let’s take a date and time in the shape of a Python datetime, convert
it into a string, and then see how that string can be consumed by
JavaScript.

First we produce our Python datetime:

from datetime import datetime

d = datetime.now()
d.isoformat()
Out:
'2015-09-15T21:48:50.746674'

This string can then be saved to JSON or CSV, read by JavaScript,
and used to create a Date object:

d = new Date('2015-09-15T21:48:50.746674')
> Tue Sep 15 2015 22:48:50 GMT+0100 (BST)

We can return the datetime to ISO 8601 string form with the toISO
String method:

d.toISOString()
> "2015-09-15T21:48:50.746Z"

Finally, we can read the string back into Python.

Dealing with Dates, Times, and Complex Data | 83

https://en.wikipedia.org/wiki/Time_zone
https://en.wikipedia.org/wiki/Time_zone

10 To install, just run pip install dateutil. dateutil is a pretty powerful extension of
Python’s datetime; check it out on Read the Docs.

If you know that you’re dealing with an ISO-format time string,
Python’s dateutil module should do the job.10 But you’ll probably
want to sanity-check the result:

from dateutil import parser

d = parser.parse("2015-09-15T21:48:50.746Z")
d
Out:
datetime.datetime(2015, 9, 15, 21, 48, 50, 746000, \
tzinfo=tzutc())

Note that we’ve lost some resolution in the trip from Python to Java‐
Script and back again, the latter dealing in milliseconds, not micro‐
seconds. This is unlikely to be an issue in any dataviz work but is
good to bear in mind just in case some strange temporal errors
occur.

Summary
This chapter aimed to make you comfortable using Python to move
data around the various file formats and databases that a data visual‐
izer might expect to bump into. Using databases effectively and effi‐
ciently is a skill that takes a while to learn, but you should now be
comfortable with basic reading and writing for the large majority of
dataviz use cases.

Now that we have the vital lubrication for our dataviz toolchain, let’s
get up to scratch on the basic web development skills you’ll need for
the chapters ahead.

84 | Chapter 3: Reading and Writing Data with Python

https://dateutil.readthedocs.org/en/latest/

CHAPTER 4

Webdev 101

This chapter introduces the core web-development knowledge you
will need to understand the web pages you scrape for data and to
structure those you want to deliver as the skeleton of your JavaScrip‐
ted visualizations. As you’ll see, a little knowledge goes a long way in
modern webdev, particularly when your focus is building self-
contained visualizations and not entire websites (see “Single-Page
Apps” on page 86 for more details).

The usual caveats apply: this chapter is part reference, part tutorial.
There will probably be stuff here you know already, so feel free to
skip over it and get to the new material.

The Big Picture
The humble web page, the basic building block of the World Wide
Web (WWW)—that fraction of the Internet consumed by humans
—is constructed from files of various types. Apart from the multi‐
media files (images, videos, sound, etc.), the key elements are tex‐
tual, consisting of Hypertext Markup Language (HTML), Cascading
Style Sheets (CSS), and JavaScript. These three, along with any nec‐
essary data files, are delivered using the Hypertext Transfer Protocol
(HTTP) and used to build the page you see and interact with in your
browser window, which is described by the Document Object Model
(DOM), a hierarchical tree off which your content hangs. A basic
understanding of how these elements interact is vital to building
modern web visualizations, and the aim of this chapter is to get you
quickly up to speed.

85

Web development is a big field, and the aim here is not to turn you
into a full-fledged web developer. I assume you want to limit the
amount of webdev you have to do as much as possible, focusing only
on that fraction necessary to build a modern visualization. In order
to build the sort of visualizations showcased at d3js.org, published in
the New York Times, or incorporated in basic interactive data dash‐
boards, you actually need surprisingly little webdev fu. The result of
your labors should be easy to add to a larger website by someone
dedicated to that job. In the case of small, personal websites, it’s easy
enough to incorporate the visualization yourself.

Single-Page Apps
Single-page applications (SPAs) are web applications (or whole sites)
that are dynamically assembled using JavaScript, often building
upon a lightweight HTML backbone and CSS styles that can be
applied dynamically using class and id attributes. Many modern
data visualizations fit this description, including the Nobel Prize vis‐
ualization this book builds toward.

Often self-contained, the SPA’s root folder can be easily incorporated
in an existing website or stand alone, requiring only an HTTP server
such as Apache or Nginx.

Thinking of our data visualizations in terms of SPAs removes a lot of
the cognitive overhead from the webdev aspect of JavaScript visuali‐
zations, allowing us to focus on programming challenges. The skills
required to put the visualization on the Web are still fairly basic and
quickly amortized. Often it will be someone else’s job.

Tooling Up
As you’ll see, the webdev needed to make modern data visualiza‐
tions requires no more than a decent text editor, modern browser,
and a terminal (Figure 4-1). I’ll cover what I see as the minimal
requirements for a webdev-ready editor and nonessential but nice-
to-have features.

86 | Chapter 4: Webdev 101

http://d3js.org/

Figure 4-1. Primary webdev tools

Tooling Up | 87

My browser development tools of choice are Chrome’s web-
developer kit, freely available on all platforms. It has a lot of tab-
delineated functionality, the following of which I’ll cover in this
chapter:

• The Elements tab, which allows you to explore the structure of a
web page, its HTML content, CSS styles, and DOM presentation

• The Sources tab, where most of your JavaScript debugging will
take place

You’ll need a terminal for output, starting your local web server, and
sketching ideas with the IPython interpreter.

Before dealing with what you do need, let’s deal with a few things
you don’t need when setting out, laying a couple of myths to rest on
the way.

The Myth of IDEs, Frameworks, and Tools
There is a common assumption among the prospective JavaScripter
that to program for the Web requires a complex toolset, primarily an
Intelligent Development Environment (IDE), as used by enterprise
—and other—coders everywhere. This is potentially expensive and
presents another learning curve. The good news is that not only
have I never used an IDE to program for the Web, but I can’t think
of anyone I know in the discipline who does. In all probability, the
wonderful web visualizations you have seen, which may have
spurred you to pick up this book, were created with nothing more
than a humble text editor, a modern web browser for viewing and
debugging, and a console or terminal for logging and output.

There is also a common myth that one cannot be productive in Java‐
Script without using a framework of some kind. At the moment, a
number of these frameworks are vying for control of the JS ecosys‐
tem, sponsored by the various huge companies that created them.
These frameworks come and go at a dizzying rate, and my advice for
anyone starting out in JavaScript is to ignore them entirely while
you develop your core skills. Use small, targeted libraries, such as
those in the jQuery ecosystem or Underscore’s functional program‐
ming extensions, and see how far you can get before needing a my
way or the highway framework. Only lock yourself into a framework
to meet a clear and present need, not because the current JS group‐

88 | Chapter 4: Webdev 101

https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/

1 I bear the scars so you don’t have to.

think is raving about how great it is.1 Another important considera‐
tion is that D3, the prime web dataviz library, doesn’t really play well
with any of the bigger frameworks I know, particularly the ones that
want control over the DOM.

Another thing you’ll find if you hang around webdev forums, Red‐
dit lists, and Stack Overflow is a huge range of tools constantly
clamoring for attention. There are JS+CSS minifiers, watchers to
automatically detect file changes and reload web pages during devel‐
opment, among others. While a few of these have their place, in my
experience there are a lot of flaky tools that probably cost more time
in hair-tearing than they gain in productivity. To reiterate, you can
be very productive without these things and should only reach for
one to scratch an urgent itch. Some are keepers, but very few are
even remotely essential for data visualization work.

A Text-Editing Workhorse
First and foremost among your webdev tools is a text editor that you
are comfortable with and which can, at the very least, do syntax
highlighting for multiple languages—in our case, HTML, CSS, Java‐
Script, and Python. You can get away with a plain, nonhighlighting
editor, but in the long run it will prove to be a pain. Things like syn‐
tax highlighting, code linting, intelligent indentation, and the like
remove a huge cognitive load from the process of programming, so
much so that I see their absence as a limiting factor. These are my
minimal requirements for a text editor:

• Syntax highlighting for all languages you use
• Configurable indentation levels and types for languages (e.g.,

Python 4 soft tabs, JavaScript 2 soft tabs)
• Multiple windows/panes/tabs to allow easy navigation around

your code base

If you are using a relatively advanced text editor, all the above
should come as standard with the exception of code linting, which
will probably require a bit of configuration.

Tooling Up | 89

2 The specification for modern JavaScript is defined by the Ecmascript lineage.

My leading candidate for nice to have is a decent code linter. If the
mark of a useful tool is how much you would miss its absence, then
code linting is easily in my top five. For scripting languages like
Python and JavaScript, there’s only so much intelligent code analysis
that can be achieved syntactically, but just sanity-checking the obvi‐
ous syntax errors can be a huge time saver. In JavaScript in particu‐
lar, some mistakes are transparent, in the sense that things will run
in spite of them, and will quite often produce confusing error mes‐
sages. A code linter can save you time here and enforce good prac‐
tice. Figure 4-2 shows a contrived example of a JavaScript code linter
in action.

Figure 4-2. A running code linter analyzes the JavaScript continuously,
highlighting syntax errors in red and adding a ! to the left of the
offending line

A recent addition to Ecmascript 52 is a strict mode, which enforces a
modern JavaScript context. This mode is recognized by most linters
and you can invoke it by placing 'use strict' at the top of your
program or within a function, to restrict it to that context. Modern
browsers should also honor strict mode, throwing errors for non-
compliance. In strict mode, trying to assign foo = "bar"; will fail if

90 | Chapter 4: Webdev 101

https://en.wikipedia.org/wiki/Lint_%28software%29

foo hasn’t been previously defined. See John Resig’s blog for a nice
explanation of strict mode.

Browser with Development Tools
One of the reasons an IDE is pretty much redundant in modern
webdev is that the best place to do debugging is in the web browser
itself, and such is the pace of change there that any IDE attempting
to emulate that context will have its work cut out for it. On top of
this, modern web browsers have evolved a powerful set of debug‐
ging and development tools. Firefox’s Firebug led the way but has
since been surpassed by Chrome Developer, which offers a huge
amount of functionality, from sophisticated (certainly to a Pytho‐
nista) debugging (parametric breakpoints, variable watches, etc.) to
memory and processor optimization profiling, device emulation
(want to know what your web page looks like on a smartphone or
tablet?), and a whole lot more. Chrome Developer is my debugger of
choice and will be used in this book. Like everything covered, it’s
free as in beer.

Terminal or Command Prompt
The terminal or command line is where you initiate the various
servers and probably output useful logging information. It’s also
where you’ll try out Python modules or run a Python interpreter
(IPython being in many ways the best).

In OS X and Linux, this window is called a Terminal or xterm. In
Windows, it’s a command prompt that should be available through
clicking Start→All Programs→Accessories.

Building a Web Page
There are four elements to a typical web visualization:

• An HTML skeleton, with placeholders for our programmatic
visualization

• Cascading Style Sheets (CSS), which define the look and feel
(e.g., border widths, colors, font sizes, placement of content
blocks).

Building a Web Page | 91

http://ejohn.org/blog/ecmascript-5-strict-mode-json-and-more/

• JavaScript to build the visualization
• Data to be transformed

The first three of these are just text files, created using our favorite
editor and delivered to the browser by the web server (see Chap‐
ter 12). Let’s examine each in turn.

Serving Pages with HTTP
The delivery of the HTML, CSS, and JS files that are used to make a
particular web page (and any related data files, multimedia, etc.) is
negotiated between a server and browser using the Hypertext Trans‐
fer Protocol. HTTP provides a number of methods, the most com‐
monly used being GET, which requests a web resource, retrieving
data from the server if all goes well or throwing an error if it doesn’t.
We’ll be using GET, along with Python’s requests module, to scrape
some web page content in Chapter 6.

To negotiate the browser-generated HTTP requests, you’ll need a
server. In development, you can run a little server locally using
Python’s command-line initialized SimpleHTTPServer, like this:

$ python -m SimpleHTTPServer
Serving HTTP on 0.0.0.0 port 8000 ...

This server is now serving content locally on port 8000. You can
access the site it is serving by going to the URL http://localhost:8000
in your browser.

SimpleHTTPServer is a nice thing to have and OK for demos and the
like, but it lacks a lot of basic functionality. For this reason, as we’ll
see in Part IV, it’s better to master the use of a proper development
(and production) server like Flask (this book’s server of choice).

The DOM
The HTML files you send through HTTP are converted at the
browser end into a Document Object Model, or DOM, which can in
turn be adapted by JavaScript because this programmatic DOM is
the basis of dataviz libraries like D3. The DOM is a tree structure,
represented by hierarchical nodes, the top node being the main web
page or document.

92 | Chapter 4: Webdev 101

http://localhost:8000

3 You can code style in HTML tags using the style attribute, but it’s generally bad prac‐
tice. It’s better to use classes and ids defined in CSS.

4 As demonstrated by Mike Bostock, with a hat-tip to Paul Irish.

Essentially, the HTML you write or generate with a template is con‐
verted by the browser into a tree hierarchy of nodes, each one repre‐
senting an HTML element. The top node is called the Document
Object and all other nodes descend in a parent-child fashion. Pro‐
grammatically manipulating the DOM is at the heart of such libra‐
ries as jQuery and the mighty D3, so it’s vital to have a good mental
model of what’s going on. A great way to get the feel for the DOM is
to use a web tool such as Chrome Developer (my recommended tool‐
set) to inspect branches of the tree.

Whatever you see rendered on the web page, the bookkeeping of the
object’s state (displayed or hidden, matrix transform, etc.) is being
done with the DOM. D3’s powerful innovation was to attach data
directly to the DOM and use it to drive visual changes (Data-Driven
Documents).

The HTML Skeleton
A typical web visualization uses an HTML skeleton, and builds the
visualization on top of it using JavaScript.

HTML is the language used to describe the content of a web page. It
was first proposed by physicist Tim Berners-Lee in 1980 while he
was working at the CERN particle accelerator complex in Switzer‐
land. It uses tags such as <div>, <image>, and <h> to structure the
content of the page, while CSS is used to define the look and feel.3

The advent of HTML5 has reduced the boilerplate considerably, but
the essence has remained essentially unchanged over those thirty
years.

Fully specced HTML used to involve a lot of rather confusing header
tags, but with HTML5 some thought was put into a more user-
friendly minimalism. This is pretty much the minimal requirement
for a starting template:4

<!DOCTYPE html>
<meta charset="utf-8">
<body>
 <!-- page content -->
</body>

Building a Web Page | 93

http://bost.ocks.org/mike/d3/workshop/#8

So we need only declare the document HTML, our character-set 8-
bit Unicode, and a <body> tag below which to add our page content.
This is a big improvement on the bookkeeping required before and
provides a very low threshold to entry as far as creating the docu‐
ments that will be turned into web pages goes. Note the comment
tag form: <!-- comment -->.

More realistically, we would probably want to add some CSS and
JavaScript. You can add both directly to an HTML document by
using the <style> and <script> tags like this:

<!DOCTYPE html>
<meta charset="utf-8">
<style>
 <!-- CSS -->
</style>
<body>
 <!-- page content -->
 <script>
 <!-- JavaScript -->
 </script>
</body>

This single-page HTML form is often used in examples such as the
visualizations at d3js.org. It’s convenient to have a single page to deal
with when demonstrating code or keeping track of files, but gener‐
ally I’d suggest separating the HTML, CSS, and JavaScript elements
into separate files. The big win here, apart from easier navigation as
the code base gets larger, is that you can take full advantage of your
editor’s specific language enhancements such as solid syntax high‐
lighting and code linting (essentially syntax checking on the fly).
While some editors and libraries claim to deal with embedded CSS
and JavaScript, I haven’t found an adequate one.

To use CSS and JavaScript files, we just include them in the HTML
using <link> and <script> tags like this:

<!DOCTYPE html>
<meta charset="utf-8">
<link rel="stylesheet" href="style.css" />
<body>
 <!-- page content -->
 <script type="text/javascript" src="script.js"></script>
</body>

94 | Chapter 4: Webdev 101

Marking Up Content
Visualizations often use a small subset of the available HTML tags,
usually building the page programmatically by attaching elements to
the DOM tree.

The most common tag is the <div>, marking a block of content.
<div>s can contain other <div>s, allowing for a tree hierarchy, the
branches of which are used during element selection and to propa‐
gate user interface (UI) events such as mouse clicks. Here’s a simple
<div> hierarchy:

<div id="my-chart-wrapper" class="chart-holder dev">
 <div id="my-chart" class="bar chart">
 this is a placeholder, with parent #my-chart-wrapper
 </div>
</div>

Note the use of id and class attributes. These are used when you’re
selecting DOM elements and to apply CSS styles. IDs are unique
identifiers; each element should have only one and there should be
only one occurrence of any particular id per page. The class can be
applied to multiple elements, allowing bulk selection, and each ele‐
ment can have multiple classes.

For textual content, the main tags are <p>, <h*>, and
. You’ll be
using these a lot. This code produces Figure 4-3:

<h2>A Level-2 Header</h2>
<p>A paragraph of body text with a line break here..</br>
and a second paragraph...</p>

Figure 4-3. An h2 header and text

Header tags are reverse-ordered by size from the largest <h1>.

<div>, <h*>, and <p> are what is known as block elements. They nor‐
mally begin and end with a new line. The other class of tag is inline
elements, which display without line breaks. Images , hyper‐
links <a>, and table cells <td> are among these, which include the
 tag for inline text:

Building a Web Page | 95

<div id="inline-examples">

 <p>This is a link to
 link-url</p>
</div>

Note that we don’t need a closing tag for images.

The span and link are continuous in the text.

Other useful tags include lists, ordered and unordered :

 First item
 Second item

HTML also has a dedicated <table> tag, useful if you want to
present raw data in your visualization. This HTML produces the
header and row in Figure 4-4:

 <table id="chart-data">
 <tr>
 <th>Name</th>
 <th>Category</th>
 <th>Country</th>
 </tr>
 <tr>
 <td>Albert Einstein</td>
 <td>Physics</td>
 <td>Switzerland</td>
 </tr>
</table>

The header row

The first row of data

Figure 4-4. An HTML table

When you are making web visualizations, the most often used of the
tags above are the textual tags, which provide instructions, informa‐
tion boxes, and so on. But the meat of our JavaScript efforts will
probably be devoted to building DOM branches rooted on the Scal‐
able Vector Graphics (SVG) <svg> and <canvas> tags. On most

96 | Chapter 4: Webdev 101

5 This is not the same as programmatically setting styles, which is a hugely powerful
technique that allows styles to adapt to user interaction.

modern browsers, the <canvas> tag also supports a 3D WebGL con‐
text, allowing OpenGL visualizations to be embedded in the page.

We’ll deal with SVG, the focus of this book and the format used by
the mighty D3 library, in “Scalable Vector Graphics” on page 107.
Now let’s look at how we add style to our content blocks.

CSS
CSS, short for Cascading Style Sheets, is a language for describing
the look and feel of a web page. Though you can hardcode style
attributes into your HTML, it’s generally considered bad practice.5

It’s much better to label your tag with an id or class and use that to
apply styles in the stylesheet.

The key word in CSS is cascading. CSS follows a precedence rule so
that in the case of a clash, the latest style overrides earlier ones. This
means the order of inclusion for sheets is important. Usually, you
want your stylesheet to be loaded last so that you can override both
the browser defaults and styles defined by any libraries you are
using.

Figure 4-5 shows how CSS is used to apply styles to the HTML ele‐
ments. First you select the element using hashes (#) to indicate a
unique ID and dots (.) to select members of a class. You then define
one or more property/value pairs. Note that the font-family prop‐
erty can be a list of fallbacks, in order of preference. Here we want
the browser default font-family of serif (capped strokes) to be
replaced with the more modern sans-serif, with Helvetica Neue
as our first choice.

Building a Web Page | 97

Figure 4-5. Styling the page with CSS

Understanding CSS precedence rules is key to successfully applying
styles. In a nutshell, the order is:

1. !important after CSS property trumps all.
2. The more specific the better (i.e., ids override classes).
3. The order of declaration: last declaration wins, subject to 1 and

2.

So, for example, say we have a of class alert:

something to be alerted to

Putting the following in our style.css file will make the alert text red
and bold:

.alert { font-weight:bold; color:red }

If we then add this to the style.css, the id color black will override the
class color red, while the class font-weight remains bold:

#special-alert {background: yellow; color:black}

98 | Chapter 4: Webdev 101

6 This is generally considered bad practice and is usually an indication of poorly struc‐
tured CSS. Use with extreme caution, as it can make life very difficult for codevelopers.

7 These are succinctly discussed in Douglas Crockford’s famously short JavaScript: The
Good Parts (O’Reilly).

To enforce the color red for alerts, we can use the !important direc‐
tive:6

.alert { font-weight:bold; color:red !important }

If we then add another stylesheet, style2.css, after style.css:
<link rel="stylesheet" href="style.css" type="text/css" />
<link rel="stylesheet" href="style2.css" type="text/css" />

with style2.css containing the following:

.alert { font-weight:normal }

then the font-weight of the alert will be reverted to normal because
the new class style was declared last.

JavaScript
JavaScript is the only first-class, browser-based programming lan‐
guage. In order to do anything remotely advanced (and that
includes all modern web visualizations), you should have a Java‐
Script grounding. Other languages that claim to make client-side/
browser programming easier, such as Typescript, Coffeescript, and
the like, compile to JavaScript, which means debugging either uses
(generally flaky) mapping files or involves understanding the auto‐
mated JavaScript. 99% of all web visualization examples, the ones
you should aim to be learning from, are in JavaScript, and voguish
alternatives have a way of fading with time. In essence, good compe‐
tence in (if not mastery of) JavaScript is a prerequisite for interest‐
ing web visualizations.

The good news for Pythonistas is that JavaScript is actually quite a
nice language once you’ve tamed a few of its more awkward quirks.7

As I showed in Chapter 2, JavaScript and Python have a lot in com‐
mon and it’s usually easy to translate from one to the other.

Data
The data needed to fuel your web visualization will be provided by
the web server as static files (e.g., JSON or CSV files) or dynamically

Building a Web Page | 99

through some kind of web API (e.g., RESTful APIs), usually retriev‐
ing the data server-side from a database. We’ll be covering all these
forms in Part IV.

Although a lot of data used to be delivered in XML form, modern
web visualization is predominantly about JSON and, to a lesser
extent, CSV or TSV files.

JSON (short for JavaScript Object Notation) is the de facto web visu‐
alization data standard and I recommend you learn to love it. It
obviously plays very nicely with JavaScript, but its structure will also
be familiar to Pythonistas. As we saw in “JSON” on page 63, reading
and writing JSON data with Python is a snap. Here’s a little example
of some JSON data:

{
 "firstName": "Groucho",
 "lastName": "Marx",
 "siblings": ["Harpo", "Chico", "Gummo", "Zeppo"],
 "nationality": "American",
 "yearOfBirth": 1890
}

Chrome’s Developer Tools
The arms race in JavaScript engines in recent years, which has pro‐
duced huge increases in performance, has been matched by an
increasingly sophisticated range of development tools built in to the
various browers. Firefox’s Firebug led the pack for a while but Chro‐
me’s Developer Tools have surpassed it, and are adding functionality
all the time. There’s now a huge amount you can do with Chrome’s
tabbed tools, but here I’ll introduce the two most useful tabs, the
HTML+CSS-focused Elements and the JavaScript-focused Sources.
Both of these work in complement to Chrome’s developer console,
demonstrated in “JavaScript” on page 14.

The Elements Tab
To access the Elements tab, select More Tools→Developer Tools
from the righthand options menu or use the Ctrl-Shift-I keyboard
shortcut.

Figure 4-6 shows the Elements tab at work. You can select DOM ele‐
ments on the page by using the lefthand magnifying glass and see
their HTML branch in the left panel. The right panel allows you to

100 | Chapter 4: Webdev 101

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/JSON

8 Being able to play with attributes is particularly useful when trying to get Scalable Vec‐
tor Graphics (SVG) to work.

see CSS styles applied to the element and look at any event listeners
that are attached or DOM properties.

Figure 4-6. Chrome Developer Tools Elements tab

One really cool feature of the Elements tab is that you can interac‐
tively change element styling for both CSS styles and attributes.8

This is a great way to refine the look and feel of your data visualiza‐
tions.

Chrome’s Elements tab provides a great way to explore the structure
of a page, finding out how the different elements are positioned.
This is good way to get your head around positioning content blocks
with the position and float properties. Seeing how the pros apply
CSS styles is a really good way to up your game and learn some use‐
ful tricks.

The Sources Tab
The Sources tab allows you to see any JavaScript included in the
page. Figure 4-7 shows the tab at work. In the lefthand panel, you
can select a script or an HTML file with embedded <script> tagged

Chrome’s Developer Tools | 101

JavaScript. As shown, you can place a breakpoint in the code, load
the page, and, on break, see the call stack and any scoped or global
variables. These breakpoints are parametric, so you can set condi‐
tions for them to trigger, which is handy if you want to catch and
step through a particular configuration. On break, you have the
standard to step in, out, and over functions, and so on.

Figure 4-7. Chrome Developer Tools Sources tab

The Sources tab is a fantastic resource and is the main reason why I
hardly ever turn to console logging when trying to debug JavaScript.
In fact, where JS debugging was once a hit-and-miss black art, it is
now almost a pleasure.

Other Tools
There’s a huge amount of functionality in those Chrome Developer
Tools tabs and they are being updated almost daily. You can do
memory and CPU timelines and profiling, monitor your network
downloads, and test out your pages for different form factors. But
you’ll spend 99% of your time as a data visualizer in the Elements
and Sources tabs.

102 | Chapter 4: Webdev 101

A Basic Page with Placeholders
Now that we have covered the major elements of a web page, let’s
put them together. Most web visualizations start off as HTML and
CSS skeletons, with placeholder elements ready to be fleshed out
with a little JavaScript plus data (see “Single-Page Apps” on page 86).

We’ll first need our HTML skeleton, using the code in Example 4-1.
This consists of a tree of <div> content blocks defining three chart-
elements: a header, main, and sidebar section. We’ll save this file as
index.html.

Example 4-1. The file index.html, our HTML skeleton

<!DOCTYPE html>
<meta charset="utf-8">

<link rel="stylesheet" href="style.css" type="text/css" />

<body>

 <div id="chart-holder" class="dev">
 <div id="header">
 <h2>A Catchy Title Coming Soon...</h2>
 <p>Some body text describing what this visualization is all
 about and why you should care.</p>
 </div>
 <div id="chart-components">
 <div id="main">
 A placeholder for the main chart.
 </div><div id="sidebar">
 <p>Some useful information about the chart,
 probably changing with user interaction.</p>
 </div>
 </div>
 </div>

 <script src="script.js"></script>
</body>

Now we have our HTML skeleton, we want to style it using some
CSS. This will use the classes and ids of our content blocks to adjust
size, position, background color, etc. To apply our CSS, in
Example 4-1 we import a style.css file, shown in Example 4-2.

A Basic Page with Placeholders | 103

Example 4-2. The style.css file, providing our CSS styling

body {
 background: #ccc;
 font-family: Sans-serif;
}

div.dev {
 border: solid 1px red;
}

div.dev div {
 border: dashed 1px green;
}

div#chart-holder {
 width: 600px;
 background :white;
 margin: auto;
 font-size :16px;
}

div#chart-components {
 height :400px;
 position :relative;
}

div#main, div#sidebar {
 position: absolute;
}

div#main {
 width: 75%;
 height: 100%;
 background: #eee;
}

div#sidebar {
 right: 0;
 width: 25%;
 height: 100%;
}

This dev class is a handy way to see the border of any visual
blocks, which is useful for visualization work.

Makes chart-components the relative parent.

104 | Chapter 4: Webdev 101

Makes the main and sidebar positions relative to chart-
components.

Positions this block flush with the right wall of chart-

components.

We use absolute positioning of the main and sidebar chart elements
(Example 4-2). There are various ways to position the content
blocks with CSS, but absolute positioning gives you explicit control
over their placement, which is a must if you want to get the look just
right.

After specifying the size of the chart-components container, the
main and sidebar child elements are sized and positioned using per‐
centages of their parent. This means any changes to the size of
chart-components will be reflected in its children.

With our HTML and CSS defined, we can examine the skeleton by
firing up Python’s single-line SimpleHTTPServer in the project
directory containing the index.html and style.css files defined in
Examples 4-1 and 4-2, like so:

$ python -m SimpleHTTPServer
Serving HTTP on 0.0.0.0 port 8000 ...

Figure 4-8 shows the resulting page with the Elements tab open, dis‐
playing the page’s DOM tree.

The chart’s content blocks are now positioned and sized correctly,
ready for JavaScript to add some engaging content.

A Basic Page with Placeholders | 105

Figure 4-8. Building a basic web page

Filling the Placeholders with Content
With our content blocks defined in HTML and positioned with CSS,
a modern data visualization uses JavaScript to construct its interac‐
tive charts, menus, tables, and the like. There are many ways to cre‐
ate visual content (aside from image or multimedia tags) in your
modern browser, the main ones being:

• Scalable Vector Graphics (SVG) using special HTML tags
• Drawing to a 2D canvas context
• Drawing to a 3D canvas WebGL context, allowing a subset of

OpenGL commands
• Using modern CSS to create animations, graphic primitives, and

more.

Because SVG is the language of choice for D3, in many ways the big‐
gest JavaScript dataviz library, many of the cool web data visualiza‐
tions you have seen, such as those by the New York Times, are built
using it. Broadly speaking, unless you anticipate having lots (>1,000)
of moving elements in your visualization or need to use a specific
canvas-based library, SVG is probably the way to go.

106 | Chapter 4: Webdev 101

9 With a canvas graphic context, you generally have to contrive your own event
handling.

10 This number changes with time and the browser in question, but as a rough rule of
thumb, SVG often starts to strain in the low thousands.

By using vectors instead of pixels to express its primitives, SVG will
generally produce cleaner graphics that respond smoothly to scaling
operations. It’s also much better at handling text, a crucial consider‐
ation for many visualizations. Another key advantage of SVG is that
user interaction (e.g., mouse hovering or clicking) is native to the
browser, being part of the standard DOM event handling.9 A final
point in its favor is that because the graphic components are built on
the DOM, you can inspect and adapt them using your browser’s
development tools (see “Chrome’s Developer Tools” on page 100).
This can make debugging and refining your visualizations much
easier than trying to find errors in the canvas’s relatively black box.

canvas graphics contexts come into their own when you need to
move beyond simple graphic primitives like circles and lines, such as
when incorporating images like PNGs and JPGs. canvas is usually
considerably more performant than SVG, so anything with lots of
moving elements10 is better off rendered to a canvas. If you want to
be really ambitious or move beyond 2D graphics, you can even
unleash the awesome power of modern graphics cards by using a
special form of canvas context, the OpenGL-based WebGL context.
Just bear in mind that what would be simple user interaction with
SVG (e.g., clicking on a visual element) often has to be derived from
mouse coordinates manually, which adds a tricky layer of complex‐
ity.

The Nobel Prize data visualization realized at the end of this book’s
toolchain is built primarily with D3, so SVG graphics are the focus
of this book. Being comfortable with SVG is fundamental to modern
web-based dataviz, so let’s take a little primer.

Scalable Vector Graphics
It doesn’t seem long ago that Scalable Vector Graphics seemed all
washed up. Browser coverage was spotty and few big libraries were
using it. It seemed inevitable that the canvas tag would act as a gate‐
way to full-fledged, rendered graphics based on leveraging the awe‐

Scalable Vector Graphics | 107

some power of modern graphics cards. Pixels—not vectors—would
be the building block of web graphics and SVG would go down in
history as a valiant but ultimately doomed “nice idea.”

D3 might not single-handedly have rescued SVG in the browser, but
it must take the lion’s share of responsibility. By demonstrating what
can be done by using data to manipulate or drive the web page’s
DOM, it has provided a compelling use case for SVG. D3 really
needs its graphic primitives to be part of the document hierarchy, in
the same domain as the other HTML content. In this sense it needed
SVG as much as SVG needed it.

The <svg> Element
All SVG creations start with an <svg> root tag. All graphical ele‐
ments, such as circles and lines, and groups thereof, are defined on
this branch of the DOM tree. Example 4-3 shows a little SVG con‐
text we’ll use in upcoming demonstrations, a light-gray rectangle
with id chart. We also include the D3 library, loaded from d3js.org
and a script.js JavaScript file in the project folder.

Example 4-3. A basic SVG context

<!DOCTYPE html>
<meta charset="utf-8">
<!-- A few CSS style rules -->
<style>
 svg#chart {
 background: lightgray;
 }
</style>

<svg id="chart" width="300" height="225">
</svg>

<!-- Third-party libraries and our JS script. -->
<script src="http://d3js.org/d3.v3.min.js"></script>
<script src="script.js"></script>

Now that we’ve got our little SVG canvas in place, let’s start doing
some drawing.

The <g> Element
We can group shapes within our <svg> element by using the group
<g> element. As we’ll see in “Working with Groups” on page 118,

108 | Chapter 4: Webdev 101

11 You should be able to use your browser’s development tools to see the tag attributes
updating in real time.

shapes contained in a group can be manipulated together, including
changing their position, scale, or opacity.

Circles
Creating SVG visualizations, from the humblest little static bar chart
to full-fledged interactive, geographic masterpieces, involves putting
together elements from a fairly small set of graphical primitives such
as lines, circles, and the very powerful paths. Each of these elements
will have its own DOM tag, which will update as it changes.11 For
example, its x and y attributes will change to reflect any translations
within its <svg> or group (<g>) context.

Let’s add a circle to our <svg> context to demonstrate:

<svg id="chart" width="300" height="225">
 <circle r="15" cx="100" cy="50"></circle>
</svg>

This produces Figure 4-9. Note that the y coordinate is measured
from the top of the <svg> '#chart' container, a common graphic
convention.

Figure 4-9. An SVG circle

Scalable Vector Graphics | 109

Now let’s see how we go about applying styles to SVG elements.

Applying CSS Styles
The circle in Figure 4-9 is fill-colored light blue using CSS styling
rules:

#chart circle{ fill: lightblue }

In modern browsers, you can set most visual SVG styles using CSS,
including fill, stroke, stroke-width, and opacity. So if we
wanted a thick, semi-transparent green line (with id total) we
could use the following CSS:

#chart line#total {
 stroke: green;
 stroke-width: 3px;
 opacity: 0.5;
}

You can also set the styles as attributes of the tags, though CSS is
generally preferable.

<circle r="15" cx="100" cy="50" fill="lightblue"></circle>

Which SVG features can be set by CSS and
which can’t is a source of some confusion and
plenty of gotchas. The SVG spec distinguishes
between element properties and attributes, the
former being more likely to be found among the
valid CSS styles. You can investigate the valid
CSS properties using Chrome’s Elements tab and
its autocomplete. Also, be prepared for some
surprises. For example, SVG text is colored by
the fill, not color, property.

For fill and stroke, there are various color conventions you can
use:

• Named HTML colors, such as lightblue
• Using HTML hex codes (#RRGGBB); for example, white is

#FFFFFF

110 | Chapter 4: Webdev 101

http://bit.ly/28RR1Ne

• RGB values; for example, red = rgb(255, 0, 0)
• RGBA values, where A is an alpha channel (0–1); for example,

half-transparent blue is rgba(0, 0, 255, 0.5)

In addition to adjusting the color’s alpha channel with RGBA, you
can fade the SVG elements using their opacity property. Opacity is
used a lot in D3 animations.

Stroke width is measured in pixels by default but can use points.

Lines, Rectangles, and Polygons
We’ll add a few more elements to our chart to produce Figure 4-10.

Figure 4-10. Adding a few elements to our dummy chart

First we’ll add a couple of simple axis lines to our chart, using the
<line> tag. Line positions are defined by a start coordinate (x1, y1)
and an end one (x2, y2):

<line x1="20" y1="20" x2="20" y2="130"></line>
<line x1="20" y1="130" x2="280" y2="130"></line>

We’ll also add a dummy legend box in the top-right corner using an
SVG rectangle. Rectangles are defined by x and y coordinates rela‐
tive to their parent container, and a width and height:

<rect x="240" y="5" width="55" height="30"></rect>

Scalable Vector Graphics | 111

You can create irregular polygons using the <polygon> tag, which
takes a list of coordinate pairs. Let’s make a triangle marker in the
bottom right of our chart:

<polygon points="210,100, 230,100, 220,80"></polygon>

We’ll style the elements with a little CSS:

#chart circle {fill: lightblue}
#chart line {stroke: #555555; stroke-width: 2}
#chart rect {stroke: red; fill: white}
#chart polygon {fill: green}

Now that we’ve got a few graphical primitives in place, let’s see how
we add some text to our dummy chart.

Text
One of the key strengths of SVG over the rasterized canvas context
is how it handles text. Vector-based text tends to look a lot clearer
than its pixelated counterparts and benefits from smooth scaling,
too. You can also adjust stroke and fill properties, just like any SVG
element.

Let’s add a bit of text to our dummy chart: a title and labeled y-axis
(see Figure 4-11).

We place text using x and y coordinates. One important property is
the text-anchor, which stipulates where the text is placed relative to
its x position. The options are start, middle, and end; start is the
default.

We can use the text-anchor property to center our chart title. We
set the x coordinates at half the chart width and then set the text-
anchor to middle:

<text id="title" text-anchor="middle" x="150" y="20">
 A Dummy Chart
</text>

As with all SVG primitives, we can apply scaling and rotation trans‐
forms to our text. To label our y-axis, we’ll need to rotate the text to
the vertical (Example 4-4). By convention, rotations are clockwise by
degree so we’ll want a counterclockwise, –90 degree rotation. By
default rotations are around the (0,0) point of the element’s con‐
tainer (<svg> or group <g>). We want to rotate our text around its
own position, so first translate the rotation point using the extra

112 | Chapter 4: Webdev 101

arguments to the rotate function. We also want to first set the
text-anchor to the end of the y axis label string to rotate about
its end point.

Example 4-4. Rotating text

<text x="20" y="20" transform="rotate(-90,20,20)"
 text-anchor="end" dy="0.71em">y axis label</text>

In Example 4-4, we make use of the text’s dy attribute, which, along
with dx, can be used to make fine adjustments to the text’s position.
In this case, we want to lower it so that when rotated counterclock‐
wise it will be to the right of the y-axis.

SVG text elements can also be styled with CSS. Here we set the
font-family of the chart to sans-serif and the font-size to 16px,
using the title id to make that a little bigger:

#chart {
background: #eee;
font-family: sans-serif;
}
#chart text{ font-size: 16px }
#chart text#title{ font-size: 18px }

Figure 4-11. Some SVG text

Note that the text elements inherit font-family and font-size
from the chart’s CSS; you don’t have to specify a text element.

Scalable Vector Graphics | 113

Paths
Paths are the most complicated and powerful SVG element, enabling
the creation of multiline, multicurve component paths that can be
closed and filled, creating pretty much any shape you want. A simple
example is adding a little chart line to our dummy chart to produce
Figure 4-12.

Figure 4-12. A red line path from the chart axis

The red path in Figure 4-12 is produced by the following SVG:

<path d="M20 130L60 70L110 100L160 45"></path>

The path’s d attribute specifies the series of operations needed to
make the red line. Let’s break it down:

• “M20 130”: move to coordinate (20, 130)
• “L60 70”: draw a line to (60, 70)
• “L110 100”: draw a line to (110, 100)
• “L160 45”: draw a line to (160, 45)

You can imagine d as a set of instructions to a pen to move to a
point with M raising the pen from the canvas.

A little CSS styling is needed. Note that the fill is set to none;
otherwise, to create a fill area, the path would be closed, drawing a
line from its end to beginning points, and any enclosed areas filled
in with the default color black:

114 | Chapter 4: Webdev 101

12 Mike Bostock’s chord diagram is a nice example, and uses D3’s chord function.

#chart path {stroke: red; fill: none}

As well as the moveto 'M' and lineto 'L', the path has a number
of other commands to draw arcs, Bézier curves, and the like. SVG
arcs and curves are commonly used in dataviz work, with many of
D3’s libraries making use of them.12 Figure 4-13 shows some SVG
elliptical arcs created by the following code:

<svg id="chart" width="300" height="150">
 <path d="M40 40
 A30 40
 0 0 1
 80 80
 A50 50 0 0 1 160 80
 A30 30 0 0 1 190 80
">
</svg>

Having moved to position (40, 40), draw an elliptical arc with x-
radius 30, y-radius 40, and end point (80, 80).

The last two flags (0, 1) are large-arc-flag, specifying which
arc of the ellipse to use and sweep-flag, which specifies which
of the two possible ellipses defined by start and end points to
use.

Figure 4-13. Some SVG elliptical arcs

Scalable Vector Graphics | 115

http://bl.ocks.org/mbostock/4062006

The key flags used in the elliptical arc (large-arc-flag and sweep-
flag) are, like most things geometric, better demonstrated than
described. Figure 4-14 shows the effect of changing the flags for the
same relative beginning and end points, like so:

<svg id="chart" width="300" height="150">
 <path d="M40 80
 A30 40 0 0 1 80 80
 A30 40 0 0 0 120 80
 A30 40 0 1 0 160 80
 A30 40 0 1 1 200 80
">
</svg>

Figure 4-14. Changing the elliptic-arc flags

As well as lines and arcs, the path element offers a number of Bézier
curves, including quadratic, cubic, and compounds of the two. With
a little work, these can create any line path you want. There’s a nice
run-through on SitePoint with good illustrations.

For the definitive list of path elements and their arguments, go to
the w3 source. And for a nice round-up, see Jakob Jenkov’s intro‐
duction.

Scaling and Rotating
As befits their vector nature, all SVG elements can be transformed
by geometric operations. The most commonly used are rotate,

116 | Chapter 4: Webdev 101

http://www.sitepoint.com/closer-look-svg-path-data/
http://www.w3.org/TR/SVG/paths.html
http://www.w3.org/TR/SVG/paths.html
http://tutorials.jenkov.com/svg/path-element.html
http://tutorials.jenkov.com/svg/path-element.html

translate, and scale, but you can also apply skewing using skewX
and skewY or use the powerful, multipurpose matrix transform.

Let’s demonstrate the most popular transforms, using a set of identi‐
cal rectangles. The transformed rectangles in Figure 4-15 are
achieved like so:

<svg id="chart" width="300" height="150">
 <rect width="20" height="40" transform="translate(60, 55)"
 fill="blue"/>
 <rect width="20" height="40" transform="translate(120, 55),
 rotate(45)" fill="blue"/>
 <rect width="20" height="40" transform="translate(180, 55),
 scale(0.5)" fill="blue"/>
 <rect width="20" height="40" transform="translate(240, 55),
 rotate(45),scale(0.5)" fill="blue"/>
</svg>

Figure 4-15. Some SVG transforms: rotate(45), scale(0.5), scale(0.5),
then rotate(45)

The order in which transforms are applied is
important. A rotation of 45 degrees clockwise
folllowed by a translation along the x-axis will
see the element moved southeasterly, whereas
the reverse operation moves it to the left and
then rotates it.

Scalable Vector Graphics | 117

13 For example, a body group can contain an arm group, which can contain a hand group,
which can contain finger elements.

Working with Groups
Often when you are constructing a visualization, it’s helpful to group
the visual elements. A couple of particular uses are:

• When you require local coordinate schemes (e.g., if you have a
text label for an icon and you want to specify its position rela‐
tive to the icon, not the whole <svg> canvas).

• If you want to apply a scaling and/or rotation transformation to
a subset of the visual elements.

SVG has a group <g> tag for this, which you can think of as a mini
canvas within the <svg> canvas. Groups can contain groups, allow‐
ing for very flexible geometric mappings.13

Example 4-5 groups shapes in the center of the canvas, producing
Figure 4-16. Note that the position of circle, rect, and path ele‐
ments is relative to the translated group.

Example 4-5. Grouping SVG shapes

<svg id="chart" width="300" height="150">
 <g id="shapes" transform="translate(150,75)">
 <circle cx="50" cy="0" r="25" fill="red" />
 <rect x="30" y="10" width="40" height="20" fill="blue" />
 <path d="M-20 -10L50 -10L10 60Z" fill="green" />
 <circle r="10" fill="yellow">
 </g>
</svg>

118 | Chapter 4: Webdev 101

Figure 4-16. Grouping shapes with SVG <g> tag

If we now apply a transform to the group, all shapes within it will be
affected. Figure 4-17 shows the result of scaling Figure 4-16 by a fac‐
tor of 0.75 and then rotating it 90 degrees, which we achieve by
adapting the transform attribute, like so:

<svg id="chart" width="300" height="150">
 <g id="shapes",
 transform = "translate(150,75),scale(0.5),rotate(90)">
 ...
</svg>

Figure 4-17. Transforming an SVG group

Scalable Vector Graphics | 119

Layering and Transparency
The order in which the SVG elements are added to the DOM tree is
important, with later elements taking precedence, layering over oth‐
ers. In Figure 4-16, for example, the triangle path obscures the red
circle and blue rectangle and is in turn obscured by the yellow circle.

Manipulating the DOM ordering is an important part of JavaScrip‐
ted dataviz (e.g., D3’s insert method allows you to place an SVG
element before an existing one).

Element transparency can be manipulated using the alpha channel
of rgba(R,G,B,A) colors or the more convenient opacity property.
Both can be set using CSS. For overlaid elements, opacity is cumula‐
tive, as demonstrated by the color triangle in Figure 4-18, produced
by the following SVG:

<style>
 #chart circle { opacity: 0.33 }
</style>

<svg id="chart" width="300" height="150">
 <g transform="translate(150, 75)">
 <circle cx="0" cy="-20" r="30" fill="red"/>
 <circle cx="17.3" cy="10" r="30" fill="green"/>
 <circle cx="-17.3" cy="10" r="30" fill="blue"/>
 </g>
</svg>

Figure 4-18. Manipulating opacity with SVG

120 | Chapter 4: Webdev 101

The SVG elements demonstrated here were handcoded in HTML,
but in data visualization work they are almost always added pro‐
grammatically. Thus the basic D3 workflow is to add SVG elements
to a visualization, using data files to specify their attributes and
properties.

JavaScripted SVG
The fact that SVG graphics are described by DOM tags has a num‐
ber of advantages over a black box such as the <canvas> context. For
example, it allows nonprogrammers to create or adapt graphics and
is a boon for debugging.

In web dataviz, pretty much all your SVG elements will be created
with JavaScript, through a library such as D3. You can inspect the
results of this scripting using the browser’s Elements tab (see “Chro‐
me’s Developer Tools” on page 100), which is a great way to refine
and debug your work (e.g., nailing an annoying visual glitch).

As a little taster for things to come, let’s use D3 to scatter a few red
circles on an SVG canvas. The dimensions of the canvas and circles
are contained in a data object sent to a chartCircles function.

We use a little HTML placeholder for the <svg> element:

<!DOCTYPE html>
<meta charset="utf-8">

<style>
 #chart circle {fill: red}
</style>

<body>
 <svg id="chart"></svg>

 <script src="http://d3js.org/d3.v3.min.js"></script>
 <script src="script.js"></script>
</body>

With our placeholder SVG chart element in place, a little D3 in the
script.js file is used to turn some data into the scattered circles (see
Figure 4-19):

// script.js

var chartCircles = function(data) {

 var chart = d3.select('#chart');

Scalable Vector Graphics | 121

 // Set the chart height and width from data
 chart.attr('height', data.height).attr('width', data.width);
 // Create some circles using the data
 chart.selectAll('circle').data(data.circles)
 .enter()
 .append('circle')
 .attr('cx', function(d) { return d.x })
 .attr('cy', function(d) { return d.y })
 .attr('r', function(d) { return d.r });
};

var data = {
 width: 300, height: 150,
 circles: [
 {'x': 50, 'y': 30, 'r': 20},
 {'x': 70, 'y': 80, 'r': 10},
 {'x': 160, 'y': 60, 'r': 10},
 {'x': 200, 'y': 100, 'r': 5},
]
};

chartCircles(data);

Figure 4-19. D3-generated circles

We’ll see exactly how D3 works its magic in Chapter 16. For now,
let’s summarize what we’ve learned in this chapter.

Summary
This chapter provided a basic set of modern web-development skills
for the budding data visualizer. It showed how the various elements
of a web page (HTML, CSS stylesheets, JavaScript, and media files)
are delivered by HTTP and, on being received by the browser, com‐
bined to become the web page the user sees. We saw how content

122 | Chapter 4: Webdev 101

blocks are described, using HTML tags such as div and p, and then
styled and positioned using CSS. We also covered Chrome’s Ele‐
ments and Sources tabs, which are the key browser development
tools. Finally we had a little primer in SVG, the language in which
most modern web data visualizations are expressed. These skills will
be extended when our toolchain reaches its D3 visualization and
new ones will be introduced in context.

Summary | 123

PART II

Getting Your Data

In this part of the book we start our journey along the dataviz tool‐
chain (see Figure II-1), beginning with a couple of chapters on how
to get your data if it hasn’t been provided for you.

In Chapter 5 we see how to get data off the Web, using Python’s
requests library to grab web-based files and consume RESTful
APIs. We also see how to use a couple of Python libraries that wrap
more complex web APIs, namely Twitter (with Python’s Tweepy)
and Google Docs. The chapter ends with an example of lightweight
web scraping with the BeautifulSoup library.

In Chapter 6 we use Scrapy, Python’s industrial-strength web scra‐
per, to get the Nobel Prize dataset we’ll be using for our web visuali‐
zation. With this dirty dataset to hand, we’re ready for the next part
of the book, Part III.

https://en.wikipedia.org/wiki/Web_scraping

Figure II-1. Our dataviz toolchain: getting the data

CHAPTER 5

Getting Data off the Web
with Python

A fundamental part of the data visualizer’s skill set is getting the
right dataset in as clean a form as possible. And more often than not
these days, this involves getting it off the Web. There are various
ways you can do this, and Python provides some great libraries that
make sucking up the data easy.

The main ways to get data off the Web are:

• Get a raw data file in a recognized data format (e.g., JSON or
CSV) over HTTP

• Use a dedicated API to get the data
• Scrape the data by getting web pages via HTTP and parsing

them locally for the required data

This chapter will deal with these ways in turn, but first let’s get
acquainted with the best Python HTTP library out there: requests.

Getting Web Data with the requests Library
As we saw in Chapter 4, the files that are used by web browsers to
construct web pages are communicated via the Hypertext Transfer
Protocol (HTTP), first developed by Tim Berners-Lee. Getting web
content in order to parse it for data involves making HTTP requests.

127

https://en.wikipedia.org/wiki/Tim_Berners-Lee

1 This is actually a deliberate policy of the developers.
2 There are some platform dependencies that might still generate errors. This Stack

Overflow thread is a good starting point if you still have problems.

Negotiating HTTP requests is a vital part of any general-purpose
language, but getting web pages with Python used to be a rather irk‐
some affair. The venerable urllib2 library was hardly user-friendly,
with a very clunky API. requests, courtesy of Kennith Reitz,
changed that, making HTTP a relative breeze and fast establishing
itself as the go-to Python HTTP library.

requests is not part of the Python standard library1 but is part of
the Anaconda package (see Chapter 1). If you’re not using Ana‐
conda, the following pip command should do the job:

$ pip install requests
Downloading/unpacking requests
...
Cleaning up...

If you’re using a Python version prior to 2.7.9, then using requests
may generate some Secure Sockets Layer (SSL) warnings. Upgrading
to newer SSL libraries should fix this:2

$ pip install --upgrade ndg-httpsclient

Now that you have requests installed, you’re ready to perform the
first task mentioned at the beginning of this chapter and grab some
raw data files off the Web.

Getting Data Files with requests
A Python interpreter session is a good way to put requests through
its paces, so find a friendly local command line, fire up IPython, and
import requests:

$ ipython
Python 2.7.5+ (default, Feb 27 2014, 19:37:08)
...

In [1]: import requests

To demonstrate, let’s use the library to download a Wikipedia page.
We use the requests library’s get method to get the page and, by
convention, assign the result to a response object.

128 | Chapter 5: Getting Data off the Web with Python

http://docs.python-requests.org/en/latest/dev/philosophy/#standard-library
http://stackoverflow.com/questions/29099404/ssl-insecureplatform-error-when-using-requests-package
http://stackoverflow.com/questions/29099404/ssl-insecureplatform-error-when-using-requests-package
http://docs.python-requests.org/en/latest/
http://docs.continuum.io/anaconda/pkg-docs
https://en.wikipedia.org/wiki/SSL

response = requests.get(\
"https://en.wikipedia.org/wiki/Nobel_Prize")

Let’s use Python’s dir method to get a list of the response object’s
attributes:

dir(response)
Out:
...
 'content',
 'cookies',
 'elapsed',
 'encoding',
 'headers',
 ...
 'iter_content',
 'iter_lines',
 'json',
 'links',
 ...
 'status_code',
 'text',
 'url']

Most of these attributes are self-explanatory and together provide a
lot of information about the HTTP response generated. You’ll use a
small subset of these attributes generally. Firstly, let’s check the status
of the response:

response.status_code
Out: 200

As all good minimal web developers know, 200 is the HTTP status
code for OK, indicating a successful transaction. Other than 200, the
most common codes are:

401 (Unauthorized)
Attempting unauthorized access

400 (Bad Request)
Trying to access the web server incorrectly

403 (Forbidden)
Similar to 401 but no login opportunity was available

404 (Not Found)
Trying to access a web page that doesn’t exist

500 (Internal Server Error)
A general-purpose, catch-all error

Getting Data Files with requests | 129

https://docs.python.org/3/library/functions.html#dir
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

So, for example, if we made a spelling mistake with our request, ask‐
ing to see the SNoble_Prize page, we’d get a 404 (Not Found) error:

not_found_response = requests.get(\
"http://en.wikipedia.org/wiki/SNobel_Prize")
not_found_response.status_code
Out: 404

With our 200 OK response, from the correctly spelled request, let’s
look at some of the info returned. A quick overview can be had with
the headers property:

response.headers
Out: {
 'X-Client-IP': '104.238.169.128',
 'Content-Length': '65820', ...
 'Content-Encoding': 'gzip', ...
 'Last-Modified': 'Sun, 15 Nov 2015 17:14:09 GMT', ...
 'Date': 'Mon, 23 Nov 2015 21:33:52 GMT',
 'Content-Type': 'text/html; charset=UTF-8'...
 }

This shows, among other things, that the page returned was gzip-
encoded and 65 KB in size with Content-Type of text/html, enco‐
ded with Unicode UTF-8.

Since we know text has been returned, we can use the text property
of the response to see what it is:

response.text
Out: u'<!DOCTYPE html>\n<html lang="en"
dir="ltr" class="client-nojs">\n<head>\n<meta charset="UTF-8"
/>\n<title>Nobel Prize - Wikipedia, the free
encyclopedia</title>\n<script>document.documentElement... =

This shows that we do indeed have our Wikipedia HTML page, with
some inline JavaScript. As we’ll see in “Scraping Data” on page 143,
in order to make sense of this content, we’ll need a parser to read the
HTML and provide the content blocks.

requests can be a convenient way of getting web data into your
program or Python session. For example, we can grab one of the
datasets from the huge US government catalog, which often has the
choice of various file formats (e.g., JSON or CSV). Picking ran‐
domly, here’s the data from a 2006–2010 study on food affordability,
in JSON format. Note that we check that it has been fetched cor‐
rectly, with a status_code of 200:

130 | Chapter 5: Getting Data off the Web with Python

https://data.gov

response = requests.get(
"https://chhs.data.ca.gov/api/views/pbxw-hhq8/rows.json?\
accessType=DOWNLOAD")

response.status_code
Out: 200

Unfortunately, access to datasets from data.gov
is a little unreliable. If the example dataset
shown is not available, I recommend choosing
another and making sure you can access its data
using requests.

For JSON data, requests has a convenience method, allowing us to
access the response data as a Python dictionary. This contains meta-
data and a list of data items:

data = response.json()
data.keys()
Out:
[u'meta', u'data']

data['meta']['view']['description']
Out: u'This table contains data on the average cost of a
market basket of nutritious food items relative to income for
female-headed households with children, for California, its
regions, counties, and cities/towns. The ratio uses data from
the U.S. Department of Agriculture...

data['data'][0]
Out:
[1,
 u'4303993D-76F7-4A5C-914E-FDEA4EAB67BA',
 ...
 u'Food affordability for female-headed household with
 children under 18 years',
 u'2006-2010',
 u'1',
 u'AIAN',
 u'CA',
 u'06',
 u'California', ...

Now that we’ve grabbed a raw page and a JSON file off the Web, let’s
see how to use requests to consume a web data API.

Getting Data Files with requests | 131

Using Python to Consume Data from a Web
API
If the data file you need isn’t on the Web, there may well be an
Application Programming Interface (API) serving the data you
need. Using this will involve making a request to the appropriate
server to retrieve your data in a fixed format or one you get to spec‐
ify in the request.

The most popular data formats for web APIs are JSON and XML,
though a number of esoteric formats exist. For the purposes of the
JavaScripting data visualizer, JavaScript Object Notation (JSON) is
obviously preferred (see “Data” on page 99). Lucky for us, it is also
starting to predominate.

There are different approaches to creating a web API, and for a few
years there was a little war of the architectures among the three
main types of APIs inhabiting the Web:

REST
Short for REpresentational State Transfer, using a combination
of HTTP verbs (GET, POST, etc.) and Uniform Resource Identi‐
fiers (URIs; e.g., /user/kyran) to access, create, and adapt data.

XML-RPC
A remote procedure call (RPC) protocol using XML encoding
and HTTP transport.

SOAP
Short for Simple Object Access Protocol, using XML and HTTP.

This battle seems to be resolving in a victory for RESTful APIs, and
this is a very good thing. Quite apart from RESTful APIs being more
elegant, and easier to use and implement (see “A Simple RESTful
API with Flask” on page 332), some standardization here makes it
much more likely that you will recognize and quickly adapt to a new
API that comes your way. Ideally, you will be able to reuse existing
code.

Most access and manipulation of remote data can be summed up by
the acronym CRUD (create, retrieve, update, delete), originally
coined to describe all the major functions implemented in relational
databases. HTTP provides CRUD counterparts with the POST, GET,

132 | Chapter 5: Getting Data off the Web with Python

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/XML-RPC
https://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/Representational_state_transfer

PUT, and DELETE verbs and the REST abstraction builds on this
use of these verbs, acting on a Universal Resource Identifier (URI).

Discussions about what is and isn’t a proper RESTful interface can
get quite involved, but essentially the URI (e.g., http://
example.com/api/items/2) should contain all the information
required in order to perform a CRUD operation. The particular
operation (e.g., GET or DELETE) is specified by the HTTP verb.
This excludes architectures such as SOAP, which place stateful infor‐
mation in metadata on the requests header. Imagine the URI as the
virtual address of the data and CRUD all the operations you can per‐
form on it.

As data visualizers keen to lay our hands on some interesting data‐
sets, we are avid consumers here, so our HTTP verb of choice is
GET and the examples that follow will focus on the fetching of data
with various well-known web APIs. Hopefully, some patterns will
emerge.

Although the two constraints of stateless URIs and the use of the
CRUD verbs is a nice constraint on the shape of RESTful APIs, there
still manage to be many variants on the theme.

Using a RESTful Web API with requests
requests has a fair number of bells and whistles based around the
main HTTP request verbs. For a good overview, see the requests
quickstart. For the purposes of getting data, you’ll use GET and
POST pretty much exclusively, with GET being by a long way the
most used verb. POST allows you to emulate web forms, including
login details, field values, etc. in the request. For those occasions
where you find yourself driving a web form with, for example, lots
of options selectors, requests makes automation with POST easy.
GET covers pretty much everything else, including the ubiquitous
RESTful APIs, which provide an increasing amount of the well-
formed data available on the Web.

Let’s look at a more complicated use of requests, getting a URL
with arguments. The Organisation for Economic Cooperation and
Development (OECD) provides some useful datasets on its site.
These datasets provide mainly economic measures and statistics for
the member countries of the OECD, and such data can form the
basis of many interesting visualizations. The OECD provides a few

Using Python to Consume Data from a Web API | 133

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://example.com/api/items/2
http://example.com/api/items/2
http://docs.python-requests.org/en/latest/user/quickstart/
http://docs.python-requests.org/en/latest/user/quickstart/
http://bit.ly/1a1kVX5
http://bit.ly/1WRjrKI
http://bit.ly/1WRjrKI
https://data.oecd.org/

of its own, such as one allowing you to compare your country with
others in the OECD.

The OECD web API is described here, and queries are constructed
with the dataset name (dsname) and some dot-separated dimen‐
sions, each of which can be a number of + separated values. The
URL can also take standard HTTP parameters initiated by a ? and
separated by &:

<root_url>/<dsname>/<dim 1>.<dim 2>...<dim n>
/all?param1=foo¶m2=baa..
<dim 1> = 'AUS'+'AUT'+'BEL'...

So the following is a valid URL:

http://stats.oecd.org/sdmx-json/data/QNA
 /AUS+AUT.GDP+B1_GE.CUR+VOBARSA.Q
 /all?startTime=2009-Q2&endTime=2011-Q4

Specifies the QNA (Quarterly National Accounts) dataset.

Four dimensions, by location, subject, measure, and frequency.

Data from the second quarter of 2009 to the fourth quarter of
2011.

Let’s construct a little Python function to query the OECD’s API
(Example 5-1).

Example 5-1. Making a URL for the OECD API

OECD_ROOT_URL = 'http://stats.oecd.org/sdmx-json/data'

def make_OECD_request(dsname, dimensions, params=None, \
root_dir=OECD_ROOT_URL):
 """ Make a URL for the OECD API and return a response """

 if not params:
 params = {}

 dim_args = ['+'.join(d) for d in dimensions]
 dim_str = '.'.join(dim_args)

 url = root_dir + '/' + dsname + '/' + dim_str + '/all'
 print('Requesting URL: ' + url)
 return requests.get(url, params=params)

You shouldn’t use mutable values, such as {}, for Python func‐
tion defaults. See here for an explanation of this gotcha.

134 | Chapter 5: Getting Data off the Web with Python

http://www.oecd.org/statistics/compare-your-country.htm
https://data.oecd.org/api/sdmx-json-documentation/
http://docs.python-guide.org/en/latest/writing/gotchas/

We first use a Python list comprehension and the join method
to create a list of dimensions, with members concatenated with
plus signs (e.g., [USA+AUS, …]). join is then used again to
concatenate the members of dim_str with periods.

Note that requests’ get can take a parameter dictionary as its
second argument, using it to make the URL query string.

We can use this function like so, to grab economic data for the USA
and Australia from 2009 to 2010:

response = make_OECD_request('QNA',
 (('USA', 'AUS'),('GDP', 'B1_GE'),('CUR', 'VOBARSA'), ('Q')),
 {'startTime':'2009-Q1', 'endTime':'2010-Q1'})

Requesting URL: http://stats.oecd.org/sdmx-json/data/QNA/
 USA+AUS.GDP+B1_GE.CUR+VOBARSA.Q/all

Now, to look at the data, we just check that the response is OK and
have a look at the dictionary keys:

if response.status_code == 200:
 json = response.json()
 json.keys()
Out: [u'header', u'dataSets', u'structure']

The resulting JSON data is in the SDMX format, designed to facili‐
tate the communication of statistical data. It’s not the most intuitive
format around, but it’s often the case that datasets have a less than
ideal structure. The good news is that Python is a great language for
knocking data into shape. For Python’s Pandas library (see Chap‐
ter 8), there is pandaSDMX, which currently handles the XML-
based format.

The OECD API is essentially RESTful with all of the query being
contained in the URL and the HTTP verb GET specifying a fetch
operation. If a specialized Python library isn’t available to use the
API (e.g., Tweepy for Twitter), then you’ll probably end up writing
something like Example 5-1. requests is a very friendly, well-
designed library and can cope with pretty much all the manipula‐
tions required to use a web API.

Getting Country Data for the Nobel Dataviz
There are some national statistics that will come in handy for the
Nobel Prize visualization we’re using our toolchain to build. Popula‐

Using Python to Consume Data from a Web API | 135

https://en.wikipedia.org/wiki/SDMX
http://pandas.pydata.org/
https://pypi.python.org/pypi/pandaSDMX

tion sizes, three-letter international codes (e.g., GDR, USA), and
geographic centers are potentially useful when you are visualizing an
international prize and its distribution. REST countries is a handy
RESTful web resource with various international stats. Let’s use it to
grab some data.

Requests to REST countries take the following form:

https://restcountries.eu/rest/v1/<field>/<name>?<params>

As with the OECD API (see Example 5-1), we can make a simple
calling function to allow easy access to the API’s data, like so:

REST_EU_ROOT_URL = "http://restcountries.eu/rest/v1"

def REST_country_request(field='all', name=None, params=None):

 headers={'User-Agent': 'Mozilla/5.0'}

 if not params:
 params = {}

 if field == 'all':
 return requests.get(REST_EU_ROOT_URL + '/all')

 url = '%s/%s/%s'%(REST_EU_ROOT_URL, field, name)
 print('Requesting URL: ' + url)
 response = requests.get(url, params=params, headers=headers)

 if not response.status_code == 200:
 raise Exception('Request failed with status code ' \
 + str(response.status_code))

 return response

It’s usually a good idea to specify a valid User-Agent in the
header of your request. Some sites will reject the request
otherwise.

Before returning the response, make sure it has an OK (200)
HTTP code; otherwise, raise an exception with a helpful
message.

With the REST_country_request function in hand, let’s get a list of
all the countries using the US dollar as currency:

response = REST_country_request('currency', 'usd')
response.json()
Out:
[{u'alpha2Code': u'AS',
 u'alpha3Code': u'ASM',

136 | Chapter 5: Getting Data off the Web with Python

https://restcountries.eu/

 u'altSpellings': [u'AS',
 ...
 u'capital': u'Pago Pago',
 u'currencies': [u'USD'],
 u'demonym': u'American Samoan',
 ...
 u'latlng': [12.15, -68.266667],
 u'name': u'Bonaire',
 ...
 u'name': u'British Indian Ocean Territory',
 ...
 u'name': u'United States Minor Outlying Islands',
 ...

The full dataset at REST countries is pretty small, so for convenience
we’ll make a copy and store it locally to MongoDB and our nobel-
prize database using the get_mongo_database method from “Mon‐
goDB” on page 77:

db_nobel = get_mongo_database('nobel_prize')
col = db_nobel['country_data'] # country data collection

Get all the RESTful country-data
response = REST_country_request()
Insert the JSON-objects straight to our collection
col.insert(response.json())
Out:
[ObjectId('5665a1ef26a7110b79e88d49'),
 ObjectId('5665a1ef26a7110b79e88d4a'),
 ...

With our country data inserted into its MongoDB collection, let’s
again find all the countries using the US dollar as currency:

res = col.find({'currencies':{'$in':['USD']}})
list(res)
Out:
[{u'_id': ObjectId('5665a1ef26a7110b79e88d4d'),
 u'alpha2Code': u'AS',
 u'alpha3Code': u'ASM',
 u'altSpellings': [u'AS',
 ...
 u'currencies': [u'USD'],
 u'demonym': u'American Samoan',
 u'languages': [u'en', u'sm'],
 ...

Now that we’ve rolled a couple of our own API consumers, let’s take
a look at some dedicated libraries that wrap some of the larger web
APIs in an easy-to-use form.

Using Python to Consume Data from a Web API | 137

3 OAuth1 access has been deprecated recently.

Using Libraries to Access Web APIs
requests is capable of negotiating with pretty much all web APIs
and often a little function like Example 5-1 is all you need. But as the
APIs start adding authentication and the data structures become
more complicated, a good wrapper library can save a lot of hassle
and reduce the tedious bookkeeping. In this section, I’ll cover a cou‐
ple of the more popular wrapper libraries to give you a feel for the
workflow and some useful starting points.

Using Google Spreadsheets
It’s becoming more common these days to have live datasets in the
cloud. So, for example, you might find yourself required to visualize
aspects of a Google spreadsheet that is the shared data pool for a
group. My preference is to get this data out of the Google-plex and
into Pandas to start exploring it (see Chapter 11), but a good library
will let you access and adapt the data in-place, negotiating the web
traffic as required.

Gspread is the best known Python library for accessing Google
spreadsheets and makes doing so a relative breeze.

You’ll need OAuth 2.0 credentials to use the API.3 The most up-to-
date guide can be found here. Following those instructions should
provide a JSON file containing your private key.

You’ll need to install gspread and the latest Python OAuth2 client
library. Here’s how to do it with pip.

$ pip install gspread
$ pip install --upgrade oauth2client

Depending on your system, you may also need PyOpenSSL:

$ pip install PyOpenSSL

See Read the Docs for more details and troubleshooting.

138 | Chapter 5: Getting Data off the Web with Python

https://en.wikipedia.org/wiki/Wrapper_library
https://github.com/burnash/gspread
https://en.wikipedia.org/wiki/OAuth
http://bit.ly/292nobI
http://bit.ly/28W0XqK

Google’s API assumes that the spreadsheets you
are trying to access are owned or shared by your
API account, not your personal one. The email
address to share the spreadsheet with is available
at your Google developers console and in the
JSON credentials key needed to use the API. It
should look something like account-1@My

Project…iam.gserviceaccount.com.

With those libraries installed, you should be able to access any of
your spreadsheets with just a few lines. I’m using the Microbe-scope
spreadsheet, which you can see here. Example 5-2 shows how to
load the spreadsheet.

Example 5-2. Opening a Google spreadsheet

import json
import gspread
from oauth2client.client import SignedJwtAssertionCredentials

json_key = json.load(open('gspread_credentials.json'))
scope = ['https://spreadsheets.google.com/feeds']

credentials = SignedJwtAssertionCredentials(\
 json_key['client_email'],json_key['private_key'], scope)

gc = gspread.authorize(credentials)

ss = gc.open('Microbe-scope')

The JSON credentials file is the one provided by Google serv‐
ices, usually of the form My Project-b8ab5e38fd68.json.

Here we’re opening the spreadsheet by name. Alternatives are
open_by_url or open_by_id. See here for details.

Now that we’ve got our spreadsheet, we can see the worksheets it
contains:

ss.worksheets()
Out: [<Worksheet 'bugs' id:od6>,
 <Worksheet 'outrageous facts' id:o74cw7y>,
 <Worksheet 'physicians per 1,000' id:okzh6fp>,
 <Worksheet 'amends' id:ogkk64p>]

 ws = ss.worksheet('bugs')

Using Libraries to Access Web APIs | 139

http://bit.ly/28SSIbd
http://bit.ly/1UgxdpH
http://gspread.readthedocs.org/en/latest/index.html#gspread.Client

With the worksheet bugs selected from the spreadsheet, gspread
allows you to access and change column, row, and cell values
(assuming the sheet isn’t read-only). So we can get the values in the
second column with the col_values command:

ws.col_values(1)
Out: [None,
 'grey = not plotted',
 'Anthrax (untreated)',
 'Bird Flu (H5N1)',
 'Bubonic Plague (untreated)',
 'C.Difficile',
 'Campylobacter',
 'Chicken Pox',
 'Cholera',...

If you get a BadStatusLine error while accessing
a Google spreadsheet with gspread, it is proba‐
bly because the session has expired. Reopening
the spreadsheet should get things working again.
This outstanding gspread issue provides more
information.

Although you can use gspread’s API to plot directly, using a plot
library like Matplotlib, I prefer to send the whole sheet to Pandas,
Python’s powerhouse programmatic spreadsheet. This is easily
achieved with gspread’s get_all_records, which returns a list of
item dictionaries. This list can be used directly to initialize a Pandas
DataFrame (see “The DataFrame” on page 206):

df = pd.DataFrame(ws.get_all_records())
df.info()
Out:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 41 entries, 0 to 40
Data columns (total 23 columns):
 41 non-null object
average basic reproductive rate 41 non-null object
case fatality rate 41 non-null object
infectious dose 41 non-null object
...
upper R0 41 non-null object
viral load in acute stage 41 non-null object
yearly fatalities 41 non-null object
dtypes: object(23)
memory usage: 7.7+ KB

140 | Chapter 5: Getting Data off the Web with Python

http://bit.ly/291Vlch

4 The free API is currently limited to around 350 requests per hour.

In Chapter 11 we’ll see how to interactively explore a DataFrame’s
data.

Using the Twitter API with Tweepy
The advent of social media has generated a lot of data and an inter‐
est in visualizing the social networks, trending hashtags, and media
storms contained in them. Twitter’s broadcast network is probably
the richest source of cool data visualizations and its API provides
tweets4 filtered by user, hashtag, date, and the like.

Python’s Tweepy is an easy-to-use Twitter library that provides a
number of useful features, such as a StreamListener class for
streaming live Twitter updates. To start using it, you’ll need a Twit‐
ter access token, which you can acquire by following the instruc‐
tions at the Twitter docs to create your Twitter application. Once
this application is created you can get the keys and access tokens for
your app by clicking on the link at your Twitter app page.

Tweepy typically requires the four authorization elements shown
here:

The user credential variables to access Twitter API
access_token = "2677230157-Ze3bWuBAw4kwoj4via2dEntU86...TD7z"
access_token_secret = "DxwKAvVzMFLq7WnQGnty49jgJ39Acu...paR8ZH"
consumer_key = "pIorGFGQHShuYQtIxzYWk1jMD"
consumer_secret = "yLc4Hw82G0Zn4vTi4q8pSBcNyHkn35BfIe...oVa4P7R"

With those defined, accessing tweets could hardly be easier. Here we
create an OAuth auth object using our tokens and keys and use it to
start an API session. We can then grab the latest tweets from our
timeline:

In [0]: import tweepy

 auth = tweepy.OAuthHandler(consumer_key,\
 consumer_secret)
 auth.set_access_token(access_token, access_token_secret)

 api = tweepy.API(auth)

 public_tweets = api.home_timeline()
 for tweet in public_tweets:
 print tweet.text

Using Libraries to Access Web APIs | 141

https://dev.twitter.com/rest/public/rate-limiting
https://dev.twitter.com/oauth/overview/application-owner-access-tokens
https://apps.twitter.com/

RT @Glinner: Read these tweets https://t.co/QqzJPsDxUD
Volodymyr Bilyachat https://t.co/VIyOHlje6b +1 bmeyer
#javascript
RT @bbcworldservice: If scientists edit genes to
make people healthier does it change what it means to be
human? https://t.co/Vciuyu6BCx h…
RT @ForrestTheWoods:
Launching something pretty cool tomorrow. I'm excited. Keep
...

Tweepy’s API class offers a lot of convenience methods, which you
can check out in the Tweepy docs. A common visualization is using
a network graph to show patterns of friends and followers among
Twitter subpopulations. The Tweepy method followers_ids (get all
users following) and friends_ids (get all users being followed) can
be used to construct such a network:

my_follower_ids = api.followers_ids()

for id in my_followers_ids:
 followers = api.followers_ids(id)
 # ...

Gets a list of your followers’ ids (e.g., [1191701545,

1554134420, …]).

The first argument to follower_ids can be an id or screen
name.

By mapping followers of followers, you can create a network of con‐
nections that might just reveal something interesting about groups
and subgroups clustered about a particular individual or subject.
There’s a nice example of just such a Twitter analysis on Gabe Sawh‐
ney’s blog.

One of the coolest features of Tweepy is its StreamListener class,
which makes it easy to collect and process filtered tweets in real
time. Live updates of Twitter streams have been used by many mem‐
orable visualizations, such as tweetping. Let’s set up a little stream to
record tweets mentioning Python, JavaScript, and Dataviz and save
it to a MongoDB database using the get_mongo_database method
from “MongoDB” on page 77:

...
from tweepy.streaming import StreamListener
import json

142 | Chapter 5: Getting Data off the Web with Python

http://docs.tweepy.org/en/v3.2.0/api.html#api-reference
http://gabesawhney.com/visualizing-twitter-clusters-with-gephi-update/
http://gabesawhney.com/visualizing-twitter-clusters-with-gephi-update/
http://tweetping.net/

...

class MyStreamListener(StreamListener):
 """ Streams tweets and saves to a MongoDB database """

 def __init__(self, api, **kw):
 self.api = api
 super(tweepy.StreamListener, self).__init__()
 self.col = get_mongo_database('tweets', **kw)['tweets']

 def on_data(self, tweet):
 self.col.insert(json.loads(tweet))

 def on_error(self, status):
 return True # keep stream open

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth)
stream = tweepy.Stream(auth, MyStreamListener(api))

Start the stream with track list of keywords
stream.filter(track=['python', 'javascript', 'dataviz'])

The extra kw keywords allow us to pass the MongoDB-specific
host, port, and username/password arguments to the stream
listener.

The data is a raw JSON string that needs decoding before insert‐
ing into our tweets collection.

Now that we’ve had a taste of the kind of APIs you might run into
during your search for interesting data, let’s look at the primary
technique you’ll use if, as is often the case, no one is providing the
data you want in a neat, user-friendly form: scraping data with
Python.

Scraping Data
Scraping is the chief metaphor used for the practice of getting data
that wasn’t designed to be programmatically consumed off the Web.
It is a pretty good metaphor because scraping is often about getting
the balance right between removing too much and too little. Creat‐
ing procedures that extract just the right data, as cleanly as possible,
from web pages is a craft skill and often a fairly messy one at that.

Scraping Data | 143

5 Much of modern Machine Learning and Artificial Intelligence (AI) research is dedica‐
ted to creating computer software that can cope with messy, noisy, fuzzy, informal data
but, as of this book’s publication, there’s no off-the-shelf solution I know of.

But the payoff is access to visualizable data that often cannot be
acquired in any other way. Approached in the right way, scraping
can even have an intrinsic satisfaction.

Why We Need to Scrape
In an ideal virtual world, online data would be organized in a
library, with everything cataloged through a sophisticated Dewey
Decimal System for the web page. Unfortunately for the keen data
hunter, the Web has grown organically, often unconstrained by con‐
siderations of easy data access for the budding data visualizer. So, in
reality, the Web resembles a big mound of data, some of it clean and
usable (and thankfully this percentage is increasing) but much of it
poorly formed and designed for human consumption. And humans
are able to parse the kind of messy, poorly formed data that our rela‐
tively dumb computers have problems with.5

Scraping is about fashioning selection patterns that grab the data we
want and leave the rest behind. If we’re lucky, the web pages contain‐
ing the data will have helpful pointers, like named tables, specific
identities in preference to generic classes, and so on. If we’re
unlucky, then these pointers will be missing and we will have to
resort to using other patterns or, in the worst case, ordinal specifiers
such as third table in the main div. These are obviously pretty fragile,
and will break if somebody adds a table above the third.

In this section, we’ll tackle a little scraping task, to get the some
Nobel Prize winners data. We’ll use Python’s best-of-breed Beauti‐
fulSoup for this lightweight scraping foray, saving the heavy guns of
Scrapy for the next chapter.

The fact that data and images are on the Web
does not mean that they are necessarily free to
use. For our scraping examples we’ll be using
Wikipedia, which allows full reuse under the
Creative Commons license. It’s a good idea to
make sure anything you scrape is available and,
if in doubt, contact the site maintainer. You may
be required to at least cite the original author.

144 | Chapter 5: Getting Data off the Web with Python

https://en.wikipedia.org/wiki/Creative_Commons_license

BeautifulSoup and lxml
Python’s key lightweight scraping tools are BeautifulSoup and lxml.
Their primary selection syntax is different but, confusingly, each can
use the other’s parsers. The consensus seems to be that lxml’s parser
is considerably faster, but BeautifulSoup’s might be more robust
when dealing with poorly formed HTML. Personally, I’ve found
lxml to be robust enough and its syntax, based on xpaths, more
powerful and often more intuitive. I think for someone coming
from web development, familiar with CSS and jQuery, selection
based on CSS selectors is much more natural. Depending on your
system, lxml is usually the default parser for BeautifulSoup. We’ll be
using it in the following sections.

BeautifulSoup is part of the Anaconda packages (see Chapter 1) and
easily installed with pip:

$ pip install beautifulsoup4

A First Scraping Foray
Armed with requests and BeautifulSoup, let’s give ourselves a little
task to get the names, years, categories, and nationalities of all the
Nobel Prize winners. We’ll start at the main Wikipedia Nobel Prize
page. Scrolling down shows a table with all the laureates by year and
category, which is a good start to our minimal data requirements.

Some kind of HTML explorer is pretty much a must for web scrap‐
ing and the best I know is Chrome’s web developer’s Elements tab
(see “The Elements Tab” on page 100). Figure 5-1 shows the key ele‐
ments involved in quizzing a web page’s structure. We need to know
how to select the data of interest, in this case a Wikipedia table,
while avoiding other elements on the page. Crafting good selector
patterns is the key to effective scraping, and highlighting the DOM
element using the element inspector gives us both the CSS pattern
and, with a right-click, the xpath. The latter is a particularly power‐
ful syntax for DOM element selection and the basis of our
industrial-strength scraping solution, Scrapy.

Scraping Data | 145

https://en.wikipedia.org/wiki/XPath
http://en.wikipedia.org/wiki/List_of_Nobel_laureates
http://en.wikipedia.org/wiki/List_of_Nobel_laureates

Figure 5-1. Wikipedia’s main Nobel Prize Page: A and B show the
wikitable’s CSS selector. Right-clicking and selecting C (Copy XPath)
gives the table’s xpath (//*[@id="mw-content-text"]/table[1]). D
shows a thead tag generated by jQuery.

Getting the Soup
The first thing you need to do before scraping the web page of inter‐
est is to parse it with BeautifulSoup, converting the HTML into a tag
tree hierarchy or soup:

from bs4 import BeautifulSoup
import requests

BASE_URL = 'http://en.wikipedia.org'
Wikipedia will reject our request unless we add
a 'User-Agent' attribute to our http header.
HEADERS = {'User-Agent': 'Mozilla/5.0'}

def get_Nobel_soup():
 """ Return a parsed tag tree of our Nobel prize page """
 # Make a request to the Nobel page, setting valid headers
 response = requests.get(
 BASE_URL + '/wiki/List_of_Nobel_laureates',
 headers=HEADERS)

146 | Chapter 5: Getting Data off the Web with Python

 # Return the content of the response parsed by BeautifulSoup
 return BeautifulSoup(response.content, "lxml")

The second argument specifies the parser we want to use,
namely lxml’s.

With our soup in hand, let’s see how to find our target tags.

Selecting Tags
BeautifulSoup offers a few ways to select tags from the parsed soup,
with subtle differences that can be confusing. Before demonstrating
the selection methods, let’s get the soup of our Nobel Prize page:

soup = get_Nobel_soup()

Our target table (see Figure 5-1) has two defining classes, wikitable
and sortable (there are some unsortable tables on the page). We
can use BeautifulSoup’s find method to find the first table tag with
those classes. find takes a tag name as its first argument and a dic‐
tionary with class, id, and other identifiers as its second:

In[3]: soup.find('table', {'class':'wikitable sortable'})
Out[3]:
<table class="wikitable sortable">
<tr>
<th>Year</th>
...

Although we have successfully found our table by its classes, this
method is not very robust. Let’s see what happens when we change
the order of our CSS classes:

In[4]: soup.find('table', {'class':'sortable wikitable'})
nothing returned

So find cares about the order of the classes, using the class string to
find the tag. If the classes were specified in a different order—some‐
thing that might well happen during an HTML edit, then the find
fails. This fragility makes it difficult to recommend the Beauti‐
fulSoup selectors, such as find and find_all. When doing quick
hacking, I find lxml’s CSS selectors easier and more intuitive.

Using the soup’s select method (available if you specified the lxml
parser when creating it), you can specify an HTML element using its

Selecting Tags | 147

http://lxml.de/cssselect.html

6 This CSS selection syntax should be familiar to anyone who’s used JavaScript’s jQuery
library and is also similar to that used by D3.

CSS class, id, and so on. This CSS selector is converted into the
xpath syntax lxml uses internally.6

To get our wikitable, we just select a table in the soup, using the dot
notation to indicate its classes:

In[5]: soup.select('table.sortable.wikitable')
Out[5]:
[<table class="wikitable sortable">
 <tr>
 <th>Year</th>
 ...
]

Note that select returns an array of results, finding all the matching
tags in the soup. lxml provides the select_one convenience method
if you are selecting just one HTML element. Let’s grab our Nobel
table and see what headers it has:

In[8]: table = soup.select_one('table.sortable.wikitable')

In[9]: table.select('th')
Out[9]:
[<th>Year</th>,
 <th width="18%"><a href="/wiki/..._in_Physics..</th>,
 <th width="16%"><a href="/wiki/..._in_Chemis..</th>,
 ...
]

As a shorthand for select, you can call the tag directly on the soup;
so these two are equivalent:

table.select('th')
table('th')

With lxml’s parser, BeautifulSoup provides a number of different fil‐
ters for finding tags, including the simple string name we’ve just
used, searching by regular expression, using a list of tag names, and
more. See this comprehensive list for more details.

As well as lxml’s select and select_one, there are 10 BeautfulSoup
convenience methods for searching the parsed tree. These are essen‐
tially variants on find and find_all that specify which parts of the
tree they search. For example, find_parent and find_parents,
rather than looking for descendents down the tree, look for parent

148 | Chapter 5: Getting Data off the Web with Python

https://jquery.com/
https://d3js.org/
https://en.wikipedia.org/wiki/Regular_expression
http://www.crummy.com/software/BeautifulSoup/bs4/doc/#kinds-of-filters

tags of the tag being searched. All 10 methods are available in the
BeautifulSoup official docs.

Now that we know how to select our Wikipedia table and are armed
with lxml’s selection methods, let’s see how to craft some selection
patterns to get the data we want.

Crafting Selection Patterns
Having successfully selected our data table, we now want to craft
some selection patterns to scrape the required data. Using the
HTML explorer, you can see that the individual winners are con‐
tained in <td> cells, with an href <a> link to Wikipedia’s bio-pages
(in the case of individuals). Here’s a typical target row with CSS
classes that we can use as targets to get the data in the <td> cells.

 <tr>
 <td align="center">
 1901
 </td>
 <td>

 Röntgen, Wilhelm

 <a href="/wiki/Wilhelm_R%C3%B6ntgen" \
 title="Wilhelm Röntgen">
 Wilhelm Röntgen

 </td>
 <td>
 ...
</tr>

If we loop through these data cells, keeping track of their row (year)
and column (category), then we should be able to create a list of
winners with all the data we specified except nationality.

The following get_column_titles function scrapes our table for the
Nobel category column headers, ignoring the first Year column.
Often the header cell in a Wikipedia table contains a web-linked 'a'
tag; all the Nobel categories fit this model, pointing to their respec‐
tive Wikipedia pages. If the header is not clickable, we store its text
and a null href:

Selecting Tags | 149

http://www.crummy.com/software/BeautifulSoup/bs4/doc/#find-parents-and-find-parent

def get_column_titles(table):
 """ Get the Nobel categories from the table header """
 cols = []
 for th in table.select_one('tr').select('th')[1:]:
 link = th.select_one('a')
 # Store the category name and any Wikipedia link it has
 if link:
 cols.append({'name':link.text,\
 'href':link.attrs['href']})
 else:
 cols.append({'name':th.text, 'href':None})
 return cols

We loop through the table head, ignoring the first Year column
([1:]). This selects the column headers shown in Figure 5-2.

Let’s make sure get_column_titles is giving us what we want:

get_column_titles(table)
Out:
[{'href': '/wiki/List_of_Nobel_laureates_in_Physics',
 'name': u'Physics'},
 {'href': '/wiki/List_of_Nobel_laureates_in_Chemistry',
 'name': u'Chemistry'}, ...

Figure 5-2. Wikipedia’s table of Nobel Prize winners

def get_Nobel_winners(table):
 cols = get_column_titles(table)
 winners = []
 for row in table.select('tr')[1:-1]:
 year = int(row.select_one('td').text) # Gets 1st <td>

150 | Chapter 5: Getting Data off the Web with Python

 for i, td in enumerate(row.select('td')[1:]):
 for winner in td.select('a'):
 href = winner.attrs['href']
 if not href.startswith('#endnote'):
 winners.append({
 'year':year,
 'category':cols[i]['name'],
 'name':winner.text,
 'link':winner.attrs['href']
 })
 return winners

Gets all the Year rows, starting from the second, corresponding
to the rows in Figure 5-2.

Finds the <td> data cells shown in Figure 5-2.

Iterating through the year rows, we take the first Year column and
then iterate over the remaining columns, using enumerate to keep
track of our index, which will map to the category column names.
We know that all the winner names are contained in an <a> tag but
that there are occasional extra <a> tags beginning with #endnote,
which we filter for. Finally we append a year, category, name, and
link dictionary to our data array. Note that the winner selector has
an attrs dictionary containing, among other things, the <a> tag’s
href.

Let’s confirm that get_Nobel_winners delivers a list of Nobel Prize
winner dictionaries:

In [0]: get_Nobel_winners(wikitable)

[{'category': u'Physics',
 'link': '/wiki/Wilhelm_R%C3%B6ntgen',
 'name': u'Wilhelm R\xf6ntgen',
 'year': 1901},
 {'category': u'Chemistry',
 'link': '/wiki/Jacobus_Henricus_van_%27t_Hoff',
 'name': u"Jacobus Henricus van 't Hoff",
 'year': 1901},
 {'category': u'Physiology\nor Medicine',
 'link': '/wiki/Emil_Adolf_von_Behring',
 'name': u'Emil Adolf von Behring',
 'year': 1901},
...

Now that we have the full list of Nobel Prize winners and links to
their Wikipedia pages, we can use these links to scrape data from the
individuals’ biographies. This will involve making a largish number

Selecting Tags | 151

7 When scraping, you’re using other people’s web bandwidth, which ultimately costs
them money. It’s just good manners to try to limit your number of requests.

of requests, and it’s not something we really want to do more than
once. The sensible and respectful7 thing is to cache the data we
scrape, allowing us to try out various scraping experiments without
returning to Wikipedia.

Caching the Web Pages
It’s easy enough to rustle up a quick cacher in Python, but as often as
not it’s easier still to find a better solution written by someone else
and kindly donated to the open source community. requests has a
nice plugin called requests-cache that, with a few lines of configu‐
ration, will take care of all your basic caching needs.

First we install the plugin using pip:

$ pip install --upgrade requests-cache

requests-cache uses monkey-patching to dynamically replace parts
of the requests API at runtime. This means it can work transpar‐
ently. You just have to install its cache and then use requests as
usual, with all the caching being taken care of. Here’s the simplest
way to use requests-cache:

import requests
import requests_cache

requests_cache.install_cache()
use requests as usual...

The install_cache method has a number of useful options, includ‐
ing allowing you to specify the cache backend (sqlite, memory,
mongdb, or redis) or set an expiry time (expiry_after) in seconds
on the caching. So the following creates a cache named nobel_pages
with an sqlite backend and pages that expire in two hours (7,200
s).

requests_cache.install_cache('nobel_pages',\
 backend='sqlite', expire_after=7200)

requests-cache will serve most of your caching needs and couldn’t
be much easier to use. For more details, see the official docs where

152 | Chapter 5: Getting Data off the Web with Python

http://stackoverflow.com/questions/5626193/what-is-a-monkey-patch
https://requests-cache.readthedocs.org/en/latest/user_guide.html

you’ll also find a little example of request throttling, which is a use‐
ful technique when doing bulk scraping.

Scraping the Winners’ Nationalities
With caching in place, let’s try getting the winners’ nationalities,
using the first 50 for our experiment. A little get_winner_national
ity() function will use the winner links we stored earlier to scrape
their page and then use the infobox shown in Figure 5-3 to get the
Nationality attribute.

Figure 5-3. Scraping a winner’s nationality

When scraping, you are looking for reliable pat‐
terns and repeating elements with useful data.
As we’ll see, the Wikipedia infoboxes for indi‐
viduals are not such a reliable source, but click‐
ing on a few random links certainly gives that
impression. Depending on the size of the data‐
set, it’s good to perform a few experimental san‐
ity checks. You can do this manually, but, as
mentioned at the start of the chapter, this won’t
scale or improve your craft skills.

Example 5-3 takes one of the winner dictionaries we scraped earlier
and returns a name-labeled dictionary with a Nationality key if
one is found. Let’s run it on the first 50 winners and see how often a
Nationality attribute is missing:

Selecting Tags | 153

Example 5-3. Scraping the winner’s country from their biography page

def get_winner_nationality(w):
 """ scrape biographic data from the winner's wikipedia page """
 data = get_url('http://en.wikipedia.org' + w['link'])
 soup = BeautifulSoup(data)
 person_data = {'name': w['name']}
 attr_rows = soup.select('table.infobox tr')
 for tr in attr_rows:
 try:
 attribute = tr.select_one('th').text
 if attribute == 'Nationality':
 person_data[attribute] = tr.select_one('td').text
 except AttributeError:
 pass

 return person_data

We use a CSS selector to find all the <tr> rows of the table with
class infobox.

Cycles through the rows looking for a Nationality field.

Example 5-4 shows that 14 of the 50 first winners failed our attempt
to scrape their nationality. In the case of the Institut de Droit Inter‐
national, national affiliation may well be moot, but Theodore Roose‐
velt is about as American as they come. Clicking on a few of the
names shows the problem (see Figure 5-4). The lack of a standar‐
dized biography format means synonyms for Nationality are often
employed, as in Marie Curie’s Citizenship; sometimes no reference is
made, as with Niels Finsen; and Randall Cremer has nothing but a
photograph in his infobox. We can discard the infoboxes as a relia‐
ble source of winners’ nationalities but, as they appeared to be the
only regular source of potted data, this sends us back to the drawing
board. In the next chapter, we’ll see a successful approach using
Scrapy and a different start page.

Example 5-4. Testing for scraped nationalities

wdata = []
test first 50 winners
for w in winners[:50]:
 wdata.append(get_winner_nationality(w))
missing_nationality = []
for w in wdata:
 # if missing 'Nationality' add to list

154 | Chapter 5: Getting Data off the Web with Python

 if not w.get('Nationality'):
 missing_nationality.append(w)
output list
missing_nationality

[{'name': u'\xc9lie Ducommun'},
 {'name': u'Charles Albert Gobat'},
 {'name': u'Marie Curie'},
 {'name': u'Niels Ryberg Finsen'},
 {'name': u'Randal Cremer'},
 {'name': u'Institut de Droit International'},
 {'name': u'Bertha von Suttner'},
 {'name': u'Theodore Roosevelt'},
 ...

Figure 5-4. Winners without a recorded nationality

Although Wikipedia is a relative free-for-all, production-wise, where
data is designed for human consumption, you can expect a lack of
rigor. Many sites have similar gotchas and as the datasets get bigger,
more tests may be needed to find the flaws in a collection pattern.

Although our first scraping exercise was a little artificial in order to
introduce the tools, I hope it captured something of the slightly
messy spirit of web scraping. The ultimately abortive pursuit of a
reliable Nationality field for our Nobel dataset could have been fore‐
stalled by a bit of web browsing and manual HTML-source trawling.
However, if the dataset were significantly larger and the failure rate a
bit smaller, then programmatic detection, which gets easier and eas‐

Selecting Tags | 155

ier as you become acquainted with the scraping modules, really
starts to deliver.

This little scraping test was designed to introduce BeautifulSoup,
and shows that collecting the data we set ourselves requires a little
more thought, which is often the case with scraping. In the next
chapter, we’ll wheel out the big gun, Scrapy, and, with what we’ve
learned in this section, harvest the data we need for our Nobel Prize
visualization.

Summary
In this chapter, we’ve seen examples of the most common ways in
which data can be sucked out of the Web and into Python contain‐
ers, databases, or Pandas datasets. Python’s requests library is the
true workhorse of HTTP negotiation and a fundamental tool in our
dataviz toolchain. For simpler, RESTful APIs, consuming data with
requests is a few lines of Python away. For the more awkward APIs,
such as those with potentially complicated authorization, a wrapper
library like Tweepy (for Twitter) can save a lot of hassle. Decent
wrappers can also keep track of access rates and, where necessary,
throttle your requests. This is a key consideration, particularly when
there is the possibility of blacklisting unfriendly consumers.

We also started our first forays into data scraping, which is often a
necessary fallback where no API exists and the data is for human
consumption. In the next chapter, we’ll get all the Nobel Prize data
needed for the book’s visualization using Python’s Scrapy, an
industrial-strength scraping library.

156 | Chapter 5: Getting Data off the Web with Python

CHAPTER 6

Heavyweight Scraping with Scrapy

As your scraping goals get more ambitious, hacking solutions with
BeautifulSoup and requests can get very messy very fast. Managing
the scraped data as requests spawn more requests gets tricky, and if
your requests are being made synchronously, things start to slow
down rapidly. A whole load of problems you probably hadn’t antici‐
pated start to make themselves known. It’s at this point that you
want to turn to a powerful, robust library that solves all these prob‐
lems and more. And that’s where Scrapy comes in.

Where BeautifulSoup is a very handy little penknife for fast and
dirty scraping, Scrapy is a Python library that can do large-scale data
scrapes with ease. It has all the things you’d expect, like built-in
caching (with expiration times), asynchronous requests via Python’s
Twisted web framework, User-Agent randomization, and a whole lot
more. The price for all this power is a fairly steep learning curve,
which this chapter is intended to smooth, using a simple example. I
think Scrapy is a powerful addition to any dataviz toolkit and really
opens up possibilities for web data collection, but if you don’t have
any need for heavyweight scraping fu right now, it’s fine to assume
we’ve collected our Nobel Prize data and proceed to Part III. Other‐
wise, let’s buckle our seat belts and see what a real scraping engine
can do.

In “Scraping Data” on page 143, we managed to scrape a dataset
containing all the Nobel Prize winners by name, year, and category.
We did a speculative scrape of the winners’ linked biography pages,
which showed that extracting the country of nationality was going

157

to be difficult. In this chapter, we’ll set the bar on our Nobel Prize
data a bit higher and aim to scrape objects of the form shown in
Example 6-1.

Example 6-1. Our targeted Nobel JSON object

{
 "category": "Physiology or Medicine",
 "country": "Argentina",
 "date_of_birth': "8 October 1927",
 "date_of_death': "24 March 2002",
 "gender": "male",
 "link": "http:\/\/en.wikipedia.org\/wiki\/C%C3%A9sar_Milstein",
 "name": "C\u00e9sar Milstein",
 "place_of_birth": "Bah\u00eda Blanca , Argentina",
 "place_of_death": "Cambridge , England",
 "text": "C\u00e9sar Milstein , Physiology or Medicine, 1984",
 "year": 1984
}

In addition to this data, we’ll aim to scrape prize winners’ photos
(where applicable) and some potted biographical data (see
Figure 6-1). We’ll be using the photos and body text to add a little
character to our Nobel Prize visualization.

Figure 6-1. Scraping targets for the prize winners’ pages

158 | Chapter 6: Heavyweight Scraping with Scrapy

1 See the Scrapy install docs for platform-specific details.

Setting Up Scrapy
Scrapy should be one of the Anaconda packages (see Chapter 1) so
you should already have it on hand. If that’s not the case, then you
can install it with the following conda command line:

$ conda install -c https://conda.anaconda.org/anaconda scrapy

If you’re not using Anaconda, a quick pip install will do the job:1

$ pip install scrapy

With Scrapy installed, you should have access to the scrapy com‐
mand. Unlike the vast majority of Python libraries, Scrapy is
designed to be driven from the command line within the context of
a scraping project, defined by configuration files, scraping spiders,
pipelines, and so on. Let’s generate a fresh project for our Nobel
Prize scraping, using the startproject option. This is going to gen‐
erate a project folder, so make sure you run it from a suitable work
directory:

$ scrapy startproject nobel_winners
New Scrapy project 'nobel_winners' created in:
 /home/kyran/workspace/.../scrapy/nobel_winners

You can start your first spider with:
 cd nobel_winners
 scrapy genspider example example.com

As the output of startproject says, you’ll want to switch to the
nobel_winners directory in order to start driving Scrapy.

Let’s take a look at the project’s directory tree:

nobel_winners
├── nobel_winners
│ ├── __init__.py
│ ├── items.py
│ ├── pipelines.py
│ ├── settings.py
│ └── spiders
│ └── __init__.py
└── scrapy.cfg

As shown, the project directory has a subdirectory with the same
name and a config file scrapy.cfg. The nobel_winners subdirectory is

Setting Up Scrapy | 159

http://doc.scrapy.org/en/latest/intro/install.html

a Python module (containing an __init__.py file) with a few skeleton
files and a spiders directory, which will contain your scrapers.

Establishing the Targets
In “Scraping Data” on page 143, we tried to scrape the Nobel win‐
ners’ nationalities from their biography pages but found they were
missing or inconsistently labeled in many cases (see Chapter 5).
Rather than get the country data indirectly, a little Wikipedia search‐
ing shows a way through. There is a page that lists winners by coun‐
try. The winners are presented in titled, ordered lists (see
Figure 6-2), not in tabular form, which makes recovering our basic
name, category, and year data a little harder. Also the data organiza‐
tion is not ideal (e.g., the country header titles and winner lists aren’t
in useful, separate blocks). As we’ll see, a few well-structured Scrapy
queries will easily net us the data we need.

Figure 6-2 shows the starting page for our first spider along with the
key elements it will be targeting. A list of country name titles (A) is
followed by an ordered list (B) of their Nobel Prize–winning
citizens.

In order to scrape the list data, we need to fire up our Chrome
browser’s development tools (see “The Elements Tab” on page 100)
and inspect the target elements using the Elements tab and its
inspector (magnifying glass). Figure 6-3 shows the key HTML tar‐
gets for our first spider: header titles (h2) containing a country name
and followed by an ordered list (ol) of winners (li).

160 | Chapter 6: Heavyweight Scraping with Scrapy

http://en.wikipedia.org/wiki/List_of_Nobel_laureates_by_country

Figure 6-2. Scraping Wikipedia’s Nobel Prizes by nationality

Figure 6-3. Finding the HTML targets for the wikilist

Targeting HTML with Xpaths
Scrapy uses xpaths to define its HTML targets. Xpath is a syntax for
describing parts of an X(HT)ML document, and while it can get
rather complicated, the basics are straightforward and will often
solve the job at hand.

Targeting HTML with Xpaths | 161

https://en.wikipedia.org/wiki/XPath

You can get the xpath of an HTML element by using Chrome’s Ele‐
ments tab to hover over the source and then right-clicking and
selecting Copy Xpath. For example, in the case of our Nobel Prize
wikilist’s country names (h2 in Figure 6-3), selecting the xpath of
Argentina (the first country) gives the following:

//*[@id="mw-content-text"]/h2[1]

We can use the following xpath rules to decode it:

//E

Element <E> anywhere in the document (e.g., //img gets all
images on the page)

//E[@id="foo"]

Select element <E> with id foo

//*[@id="foo"]

Select any element with id foo

//E/F[1]

First child element <F> of element <E>

//E/*[1]

First child of element <E>

Following these rules shows that our Argentinian title //*[@id="mw-
content-text"]/h2[1] is the first header (h2) child of a DOM ele‐
ment with id mw-content-text. This is equivalent to the following
HTML:

<div id="mw-content-text">
 <h2>
 ...
 </h2>
 ...
</div>

Note that unlike Python, the xpaths don’t use a zero-based index but
make the first member 1.

Testing Xpaths with the Scrapy Shell
Getting your xpath targeting right is crucial to good scraping and
can involve a degree of iteration. Scrapy makes this process much
easier by providing a command-line shell, which takes a URL and

162 | Chapter 6: Heavyweight Scraping with Scrapy

creates a response context in which you can try out your xpaths, like
so:

$ scrapy shell
 https://en.wikipedia.org/wiki/
 List_of_Nobel_laureates_by_country

2015-12-15 17:42:12+0000 [scrapy] INFO: Scrapy 0.24.4 started
(bot: nobel_winners)
...
2015-12-15 17:42:12+0000 [default] INFO: Spider opened
2015-12-15 17:42:13+0000 [default] DEBUG: Crawled (200)
<GET https://en.wikip...List_of_Nobel_laureates_by_country>
(referer: None)
[s] Available Scrapy objects:

[s] crawler <scrapy.crawler.Crawler object at 0x3a8f510>
[s] item {}
[s] request <GET https://...Nobel_laureates_by_country>
[s] response <200 https://...Nobel_laureates_by_country>
[s] settings <scrapy.settings.Settings object at 0x34a98d0>
[s] spider <Spider 'default' at 0x3f59190>

[s] Useful shortcuts:
[s] shelp() Shell help (print this help)
[s] fetch(req_or_url) Fetch request (or URL) and update local
objects
[s] view(response) View response in a browser

In [1]:

Now we have an IPython-based shell with code-complete and syntax
highlighting in which to try out our xpath targeting. Let’s grab all the
<h2> headers on the wiki page:

In [1]: h2s = response.xpath('//h2')

The resulting h2s is a SelectorList, a specialized Python list object.
Let’s see how many headers we have:

In [2]: len(h2s)
Out[2]: 76

We can grab the first Selector object and query its methods and
properties in the Scrapy shell by pressing Tab after appending a dot:

In [3] h2 = h2s[0]
In [4] h2.
h2.css h2.namespaces h2.remove_namespaces
h2.text h2.extract h2.re

Targeting HTML with Xpaths | 163

http://doc.scrapy.org/en/latest/topics/selectors.html#scrapy.selector.SelectorList
http://doc.scrapy.org/en/latest/topics/selectors.html#topics-selectors-ref

h2.response h2.type h2.register_namespace
h2.select h2.xpath

You’ll often use the extract method to get the raw result of the
xpath selector:

In [5]: h2.extract()
Out[5]: u'<h2>Contents</h2>'

This shows that our first <h2> header is that of the table of contents
for our list of winners by country. Let’s look at the second header:

In [6]: h2s[1].extract()
Out[6]:
u'<h2>
 Argentina

 ...
 </h2>'

This shows that our country headers start on the second <h2> and
contain a span with class mw-headline. We can use the presence of
the mw-headline class as a filter for our country headers and the
contents as our country label. Let’s try out an xpath, using the selec‐
tor’s text method to extract the text from the mw-headline span.
Note that we use the xpath method of the <h2> selector, which
makes the xpath query relative to that element.

In [7]: h2_arg = h2s[1]
In [8]: country = h2_arg.xpath(\
 'span[@class="mw-headline"]/text()')\
.extract()
In [9]: country
Out[9]: [u'Argentina']

The extract method returns a list of possible matches, in our case
the single 'Argentina' string. By iterating through the h2s list, we
can now get our country names.

Assuming we have a country’s <h2> header, we now need to get the
 ordered list of Nobel winners following it (Figure 6-2 B).
Handily, the xpath following-sibling selector can do just that.
Let’s grab the first ordered list after the Argentina header:

In [10]: ol_arg = h2_arg.xpath('following-sibling::ol[1]')
Out[10]: ol_arg
[<Selector xpath='following-sibling::ol[1]' data=u'\n
]

164 | Chapter 6: Heavyweight Scraping with Scrapy

Looking at the truncated data for ol_arg shows that we have
selected an ordered list. Note that even though there’s only one
Selector, xpath still returns a SelectorList. For convenience,
you’ll generally just select the first member directly:

In [11]: ol_arg = h2_arg.xpath('following-sibling::ol[1]')[0]

Now that we’ve got the ordered list, let’s get a list of its member
elements:

In [12]: lis_arg = ol_arg.xpath('li')
In [13]: len(lis_arg)
Out[13]: 5

Let’s examine one of those list elements using extract. As a first
test, we’re looking to scrape the name of the winner and capture the
list element’s text.

In [14]: li = lis_arg[0] # select the first list element
In [15]: li.extract()
Out[15]:
u'<a href="/wiki/C%C3%A9sar_Milstein"
 title="C\xe9sar Milstein">C\xe9sar Milstein,
 Physiology or Medicine, 1984'

Extracting the list element shows a standard pattern: a hyperlinked
name to the winner’s Wikipedia page followed by a comma-
separated winning category and year. A robust way to get the win‐
ning name is just to select the text of the list element’s first <a> tag:

In [16]: name = li.xpath('a//text()')[0].extract()
In [17]: name
Out[17]: u'C\xe9sar Milstein'

It’s often useful to get all the text in, for example, a list element,
stripping the various HTML <a>, , and other tags.
descendent-or-self gives us a handy way of doing this, producing
a list of the descendents’ text:

In [18]: list_text = li.xpath('descendant-or-self::text()')\
.extract()
In [19]: list_text
Out[19]: [u'C\xe9sar Milstein', u', Physiology or Medicine,'\
'1984']

We can get the full text by joining the list elements together:

In [20]: ' '.join(list_text)
Out[20]: u'C\xe9sar Milstein , Physiology or Medicine, 1984'

Targeting HTML with Xpaths | 165

Note that the first item of list_text is the winner’s name, giving us
another way to access it if, for example, it were missing a hyperlink.

Now that we’ve established the xpaths to our scraping targets (the
name and link text of the Nobel Prize winners), let’s incorporate
them into our first Scrapy spider.

Selecting with Relative Xpaths
As just shown, Scrapy xpath selections return lists of selectors
which, in turn, have their own xpath methods. When using the
xpath method, it’s important to be clear about relative and absolute
selections. Let’s make the distinction clear using the Nobel page’s
table of contents as an example.

The table of contents has the following structure:

<div id='toc'... >
 <ul ... >
 <li ... >
 ...

 ...

</div>

We can select the table of contents of the Nobel wikipage using a
standard xpath query on the response, and getting the div with id
toc.

In [21]: toc = response.xpath('//div[@id="toc"]')[0]

If we want to get all the country list tags, we can use a relative
xpath on the selected toc div. The following two are equivalent,
both selecting children of the current selection relatively:

In [22]: lis = toc.xpath('.//ul/li')
In [23]: lis = toc.xpath('ul/li')
In [24]: len(lis)
Out[24]: 76 # the number of countries in the table of contents

A common mistake is to use a nonrelative xpath selector on the cur‐
rent selection, which selects from the whole document, in this case
getting all unordered () tags:

In [25]: lis = toc.xpath('//ul/li')
In [26]: len(lis)
OUt[26]: 212

166 | Chapter 6: Heavyweight Scraping with Scrapy

Errors made from mistaking relative and nonrelative queries crop
up a lot in the forums, so it’s good to be very aware of the distinction
and watch those dots.

Getting the right xpath expression for your tar‐
get element(s) can be a little tricky, and those
difficult edge cases can demand a complex nest
of clauses. The use of a well-written cheat sheet
can be a great help here, and thankfully there are
many good xpath ones. A very nice selection can
be found here, with this color-coded one being
particularly useful.

A First Scrapy Spider
Armed with a little xpath knowledge, let’s produce our first scraper
aiming to get the country and link text for the winners (Figure 6-2 A
and B).

Scrapy calls its scrapers spiders, each of which is a Python module
placed in the spiders directory of your project. We’ll call our first
scraper nwinner_list_spider.py:

.
├── nobel_winners
│ ├── __init__.py
│ ├── items.py
│ ├── pipelines.py
│ ├── settings.py
│ └── spiders
│ |── __init__.py
│ └── nwinners_list_spider.py <---
└── scrapy.cfg

Spiders are subclassed scrapy.Spider classes, and any placed in the
spiders directory will be automatically detected by Scrapy and made
accessible by name to the scrapy command.

The basic Scrapy spider shown in Example 6-2 follows a pattern
you’ll be using with most of your spiders. First you subclass a Scrapy
item to create fields for your scraped data (section A in
Example 6-2). You then create a named spider by subclassing
scrapy.Spider (section B in Example 6-2). You will use the spider’s
name when calling scrapy from the command line. Each spider has
a parse method, which deals with the HTTP requests to a list of

A First Scrapy Spider | 167

http://bit.ly/28KxCoO
http://bit.ly/1UAmlS4

start URLs contained in a start_url class attribute. In our case, the
start URL is the Wikipedia page for Nobel laureates by country.

Example 6-2. A first Scrapy spider

nwinners_list_spider.py

import scrapy
import re
A. Define the data to be scraped
class NWinnerItem(scrapy.Item):
 country = scrapy.Field()
 name = scrapy.Field()
 link_text = scrapy.Field()

B Create a named spider
class NWinnerSpider(scrapy.Spider):
 """ Scrapes the country and link text of the Nobel-winners. """

 name = 'nwinners_list'
 allowed_domains = ['en.wikipedia.org']
 start_urls = [
 "http://en.wikipedia.org ... of_Nobel_laureates_by_country"
]
 # C A parse method to deal with the HTTP response
 def parse(self, response):

 h2s = response.xpath('//h2')

 for h2 in h2s:
 country = h2.xpath('span[@class="mw-headline"]'\
 'text()').extract()
 if country:
 winners = h2.xpath('following-sibling::ol[1]')
 for w in winners.xpath('li'):
 text = w.xpath('descendant-or-self::text()')\
 .extract()
 yield NWinnerItem(
 country=country[0], name=text[0],
 link_text = ' '.join(text)
)

Gets all the <h2> headers on the page, most of which will be our
target country titles.

Where possible, gets the text of the <h2> element’s child
with class mw-headline.

168 | Chapter 6: Heavyweight Scraping with Scrapy

Gets the list of country winners.

The parse method in Example 6-2 receives the response from an
HTTP request to the Wikipedia Nobel Prize page and yields Scrapy
items, which are then converted to JSON objects and appended to
the output file, a JSON array of objects.

Let’s run our first spider to make sure we’re correctly parsing and
scraping our Nobel data. First navigate to the nobel_winners root
directory (containing the scrapy.cfg file) of the scraping project. Let’s
see what scraping spiders are available:

$ scrapy list
nwinners_list

As expected, we have one nwinners_list spider sitting in the spi‐
ders directory. To start it scraping, we use the crawl command and
direct the output to a nwinners.json file. By default, we get a lot of
Python logging information accompanying the crawl:

$ scrapy crawl nwinners_list -o nobel_winners.json
2015- ... [scrapy] INFO: Scrapy started (bot: nobel_winners)
2015- ... [scrapy] INFO: ... features available: ssl, http11
...
2015- ... [nwinners_list] INFO: Closing spider (finished)
2015- ... [nwinners_list] INFO: Dumping Scrapy stats:
 {'downloader/request_bytes': 551,
 'downloader/request_count': 2,
 'downloader/request_method_count/GET': 2,
 'downloader/response_bytes': 45469,
 ...
 'item_scraped_count': 1075,
2015- ... [nwinners_list] INFO: Spider closed (finished)

We scraped 1,075 Nobel winners from the page.

The output of the scrapy crawl shows 1,075 items successfully
scraped. Let’s look at our JSON output file to make sure things have
gone according to plan:

$ head nobel_winners.json
[{"country": "Argentina",
 "link_text": "C\u00e9sar Milstein , Physiology or Medicine,"\
 " 1984",
 "name": "C\u00e9sar Milstein"},
 {"country": "Argentina",
 "link_text": "Adolfo P\u00e9rez Esquivel , Peace, 1980",
 "name": "Adolfo P\u00e9rez Esquivel"},
 ...

A First Scrapy Spider | 169

As you can see, we have an array of JSON objects with the four key
fields present and correct.

Now that we have a spider that successfully scrapes the list data for
all the Nobel winners on the page, let’s start refining it to grab all the
data we are targeting for our Nobel Prize visualization (see
Example 6-1 and Figure 6-1).

First, let’s add all the data we plan to scrape as fields to our
scrapy.Item:

...
class NWinnerItem(scrapy.Item):
 name = scrapy.Field()
 link = scrapy.Field()
 year = scrapy.Field()
 category = scrapy.Field()
 country = scrapy.Field()
 gender = scrapy.Field()
 born_in = scrapy.Field()
 date_of_birth = scrapy.Field()
 date_of_death = scrapy.Field()
 place_of_birth = scrapy.Field()
 place_of_death = scrapy.Field()
 text = scrapy.Field()
...

It’s also sensible to simplify the code a bit and use a dedicated func‐
tion, process_winner_li, to process the winners’ link text. We’ll
pass a link selector and country name to it and return a dictionary
containing the scraped data:

...
 def parse(self, response):

 h2s = response.xpath('//h2')

 for h2 in h2s:
 country = h2.xpath('span[@class="mw-headline"]'\
 text()').extract()
 if country:
 winners = h2.xpath('following-sibling::ol[1]')
 for w in winners.xpath('li'):
 wdata = process_winner_li(w, country[0])
 ...

170 | Chapter 6: Heavyweight Scraping with Scrapy

2 There are some handy online tools for testing regexes, some of them programming-
language-specific. Pyregex is a good Python one, with a handy cheat sheet included.

Embracing Regexes
Some people, when confronted with a problem, think “I know,
I’ll use regular expressions.” Now they have two problems.

—Jamie Zawinskie

The preceding quote is a hoary old classic but does sum up how
many people feel about regular expressions (regexes). Regexes use a
sequence of characters to define a search expression used for string
matching. Both Python and JavaScript have built-in handling of
them.

In Python, the re module provides a number of regex methods. A
common task might be to find all the email addresses in a docu‐
ment, recognizing email strings by the form foo@bar.com. Let’s cre‐
ate a regex to find them, breaking down the process:2

In [12]: txt = 'Feel free to contact me at '\
' pyjdataviz@kyrandale.com with any feedback.'

In [13]: re.findall(r'[\w\.-]+@[\w\.-]+', txt)
Out[13]: ['pyjdataviz@kyrandale.com']

The findall method takes a regex string (with an r prepended) as
its first argument and the text to search as its second. The email
search pattern uses the following rules:

\w Matches an alphanumeric string containing numbers and upper and lowercase
letters (regex shorthand is [0-9a-zA-Z_])

\ Escapes a special character

\. Matches a dot

- Matches a hyphen

+ Matches one or more of the square-bracketed strings

Taken together, these rules match any two strings connected by @
and containing alphanumeric characters or dots or hyphens. This is
obviously a pretty broad pattern (e.g., .@. would provide a match)
that you might want to refine. For example, you could use r'[\w
\.-]@gmail.com if you were searching for only Gmail addresses.

A First Scrapy Spider | 171

http://www.pyregex.com/
https://en.wikipedia.org/wiki/Regular_expression

Although the syntax of regexes can be challenging at first, the fact is
that web scraping is often about pattern-matching messy and
underspecified data, and a regex is pretty much tailor-made for
many of the jobs that crop up. You can probably hack your way
around them, but embracing them a little will make your life that
much easier, and the good news is that a little goes a long way. See
Example 6-3 for some examples.

The process_winner_li method is shown in Example 6-3. A wdata
dictionary is filled with information extracted from the winner’s li
tag, using a couple of regexes to find the prize year and category.

Example 6-3. Processing a winner’s list item

...
import re
BASE_URL = 'http://en.wikipedia.org'
...
def process_winner_li(w, country=None):
 """
 Process a winner's tag, adding country of birth or
 nationality, as applicable.
 """
 wdata = {}

 wdata['link'] = BASE_URL + w.xpath('a/@href').extract()[0]

 text = ' '.join(w.xpath('descendant-or-self::text()')
 .extract())
 # get comma-delineated name and strip trailing whitespace
 wdata['name'] = text.split(',')[0].strip()

 year = re.findall('\d{4}', text)
 if year:
 wdata['year'] = int(year[0])
 else:
 wdata['year'] = 0
 print('Oops, no year in ', text)

 category = re.findall(
 'Physics|Chemistry|Physiology or Medicine|Literature|'\
 'Peace|Economics',
 text)
 if category:
 wdata['category'] = category[0]
 else:
 wdata['category'] = ''

172 | Chapter 6: Heavyweight Scraping with Scrapy

 print('Oops, no category in ', text)

 if country:
 if text.find('*') != -1:
 wdata['country'] = ''
 wdata['born_in'] = country
 else:
 wdata['country'] = country
 wdata['born_in'] = ''

 # store a copy of the link's text string
 # for any manual corrections
 wdata['text'] = text
 return wdata

To grab the href attribute from the list item’s <a> tag ([winner name]…), we use the xpath attribute
referent @.

Here, we use re, Python’s built-in regex library, to find the four-
digit year strings in the list item’s text.

Another use of the regex library to find the Nobel prize category
in the text.

An asterisk following the winner’s name is used to indicate that
the country is the winner’s by birth—not nationality—at the
time of the prize (e.g., "William Lawrence Bragg*, Physics,
1915" in the list for Australia).

Example 6-3 returns all the winners’ data available on the main
Wikipedia Nobels by Country page—that is, the name, year, cate‐
gory, country (country of birth or country of nationality when awar‐
ded the prize), and a link to the individual winners’ pages. We’ll
need to use this last information to get those biographical pages and
use them to scrape our remaining target data (see Example 6-1 and
Figure 6-1).

Scraping the Individual Biography Pages
The main Wikipedia Nobels by Country page gave us a lot of our
target data, but the winner’s date of birth, date of death (where appli‐
cable), and gender are still to be scraped. It is hoped that this infor‐
mation is available, either implicitly or explicitly, on their biography

Scraping the Individual Biography Pages | 173

3 The author got stung by this removal.
4 See here for an insight into Wikipedia dispute management.

pages (for nonorganization winners). Now’s a good time to fire up
Chrome’s Elements tab and take a look at those pages to work out
how we’re going to extract the desired data.

We saw in the last chapter (Chapter 5) that the visible information
boxes on individual’s pages are not a reliable source of information
and are often missing entirely. Until recently,3 a hidden persondata
table (see Figure 6-4) gave fairly reliable access to such information
as place of birth, date of death, and the like. Unfortunately, this
handy resource has been deprecated.4 The good news is that this is
part of an attempt to improve the categorization of biographical
information by giving it a dedicated space in Wikidata, Wikipedia’s
central storage for its structured data.

Figure 6-4. A Nobel Prize winner’s hidden persondata table

Examining Wikipedia’s biography pages with Chrome’s Elements tab
shows a link to the relevant Wikidata item (see Figure 6-5), which
takes you to the biographical data held at https://www.wikidata.org.
By following this link, we can scrape whatever we find there, which
we hope will be the bulk of our target data—significant dates and
places (see Example 6-1).

174 | Chapter 6: Heavyweight Scraping with Scrapy

http://bit.ly/1Pynkws
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org

Figure 6-5. Hyperlink to the winner’s Wikidata

Following the link to Wikidata shows a page containing fields for
the data we are looking for, such as the date of birth of our prize
winner. As Figure 6-6 shows, the properties are embedded in a nest
of computer-generated HTML, with related codes, which we can use
as a scraping identifier (e.g., date of birth has the code P569).

Figure 6-6. Biographical properties at Wikidata

Scraping the Individual Biography Pages | 175

5 Strictly speaking, there are edits being made continually by the Wikipedia community,
but the fundamental details should be stable until the next set of prizes.

As Figure 6-7 shows, the actual data we want, in this case a date
string, is contained in a further nested branch of HTML, within its
respective property tag. By selecting the div and right-clicking, we
can store the element’s xpath and use that to tell Scrapy how to get
the data it contains.

Figure 6-7. Getting the xpath for a Wikidata property

Now that we have the xpaths necessary to find our scraping targets,
let’s put it all together and see how Scrapy chains requests, allowing
for complex, multipage scraping operations.

Chaining Requests and Yielding Data
In this section we’ll see how to chain Scrapy requests, allowing us to
follow hyperlinks, scraping data as we go. First let’s enable Scrapy’s
page caching. While experimenting with xpath targets, we want to
limit the number of calls to Wikipedia, and it’s good manners to
store our fetched pages. Unlike some datasets out there, our Nobel
Prize winners change but once a year.5

Caching Pages
As you might expect, Scrapy has a sophisticated caching system that
gives you fine-grained control over your page caching (e.g., allowing

176 | Chapter 6: Heavyweight Scraping with Scrapy

http://bit.ly/1UAqGVp

6 See Jeff Knupp’s blog, “Everything I Know About Python”, for a nice rundown of
Python generators and the use of yield.

you to choose between database or filesystem storage backends, how
long before your pages are expired, etc.). It is implemented as mid‐
dleware enabled in our project’s settings.py module. There are
various options available but for the purposes of our Nobel scraping,
simply setting HTTPCACHE_ENABLED to True will suffice:

-*- coding: utf-8 -*-

Scrapy settings for nobel_winners project
#
This file contains only the most important settings by
default. All the other settings are documented here:
#
http://doc.scrapy.org/en/latest/topics/settings.html
#

BOT_NAME = 'nobel_winners'

SPIDER_MODULES = ['nobel_winners.spiders']
NEWSPIDER_MODULE = 'nobel_winners.spiders'

Crawl responsibly by identifying yourself
(and your website) on the user-agent
#USER_AGENT = 'nobel_winners (+http://www.yourdomain.com)'

HTTPCACHE_ENABLED = True

Check out the full range of Scrapy middleware in Scrapy’s documen‐
tation.

Having ticked the caching box, let’s see how to chain Scrapy
requests.

Yielding Requests
Our existing spider’s parse method cycles through the Nobel win‐
ners, using the process_winner_li method to scrape the country,
name, year, category, and biography-hyperlink fields. We now want
to use the biography hyperlinks to generate a Scrapy request that will
fetch the bio-pages and send them to a custom method for scraping.

Scrapy implements a Pythonic pattern for chaining requests, using
Python’s yield statement to create a generator,6 allowing Scrapy to

Chaining Requests and Yielding Data | 177

https://www.jeffknupp.com/blog/2013/04/07/improve-your-python-yield-and-generators-explained/
http://bit.ly/261CIhH
http://bit.ly/261CIhH
http://bit.ly/1PypUlU
http://bit.ly/1PypUlU

easily consume any extra page requests we make. Example 6-4
shows the pattern in action.

Example 6-4. Yielding a request with Scrapy

class NWinnerSpider(scrapy.Spider):
 name = 'nwinners_full'
 allowed_domains = ['en.wikipedia.org']
 start_urls = [
 "https://en.wikipedia.org/wiki/List_of_Nobel_laureates" \
 "_by_country"
]

 def parse(self, response):
 filename = response.url.split('/')[-1]

 h2s = response.xpath('//h2')
 for h2 in list(h2s)[:2]:
 country = h2.xpath('span[@class="mw-headline"]/text()')
 .extract()
 if country:
 winners = h2.xpath('following-sibling::ol[1]')
 for w in winners.xpath('li'):
 wdata = process_winner_li(w, country[0])
 request = scrapy.Request(
 wdata['link'],
 callback=self.parse_bio,
 dont_filter=True)
 request.meta['item'] = NWinnerItem(**wdata)
 yield request

 def parse_bio(self, response):
 item = response.meta['item']
 ...

Makes a request to the winner’s biography page, using the link
(wdata[link]) scraped from process_winner_li.

Sets the callback function to handle the response.

Creates a Scrapy Item to hold our Nobel data and initializes it
with the data just scraped from process_winner_li. This Item
data is attached to the metadata of the request to allow any
response access to it.

By yielding the request, we make the parse method a generator
of consumable requests.

178 | Chapter 6: Heavyweight Scraping with Scrapy

This method handles the callback from our bio-link request. In
order to add scraped data to our Scrapy Item, we first retrieve it
from the response metadata.

Our investigation of the Wikipedia pages in “Scraping the Individual
Biography Pages” on page 173 showed that we need to locate a win‐
ner’s Wikidata link from their biography page and use it to generate
a request. We will then scrape the date, place, and gender data from
the response.

Example 6-5 shows parse_bio and parse_wikidata, the two meth‐
ods used to scrape our winners’ biographical data. parse_bio uses
the scraped Wikidata link to request the Wikidata page, yielding the
request as it in turn was yielded in the parse method. At the end of
the request chain, parse_wikidata retrieves the item and fills in any
of the fields available from Wikidata, eventually yielding the item to
Scrapy.

Example 6-5. Parsing the winners’ biography data

...

 def parse_bio(self, response):

 item = response.meta['item']
 href = response.xpath("//li[@id='t-wikibase']/a/@href")
 .extract()
 if href:
 request = scrapy.Request(href[0],\
 callback=self.parse_wikidata,\
 dont_filter=True)
 request.meta['item'] = item
 yield request

 def parse_wikidata(self, response):

 item = response.meta['item']
 property_codes = [
 {'name':'date_of_birth', 'code':'P569'},
 {'name':'date_of_death', 'code':'P570'},
 {'name':'place_of_birth', 'code':'P19', 'link':True},
 {'name':'place_of_death', 'code':'P20', 'link':True},
 {'name':'gender', 'code':'P21', 'link':True}
]

 p_template = '//*[@id="{code}"]/div[2]/div/div/div[2]' \

Chaining Requests and Yielding Data | 179

 '/div[1]/div/div[2]/div[2]{link_html}/text()'

 for prop in property_codes:

 link_html = ''
 if prop.get('link'):
 link_html = '/a'
 sel = response.xpath(p_template.format(\
 code=prop['code'], link_html=link_html))
 if sel:
 item[prop['name']] = sel[0].extract()

 yield item

Extracts the link to Wikidata identified in Figure 6-5.

Uses the Wikidata link to generate a request with our spider’s
parse_wikidata as a callback to deal with the response.

These are the property codes we found earlier (see Figure 6-6),
with names corresponding to fields in our Scrapy item, NWinner
Item. Those with a True link attribute are contained in <a>
tags.

The nasty, nested xpath for the Wikidata properties used to cre‐
ate this template comes straight from Chrome’s Elements tab
(see Figure 6-7). Here we create a Python string template, with
the named variables code and link_html in curly brackets. We
can supply the code and link_html strings using this string’s
format method.

We use the string template’s format method to create the xpath
based on the required property codes, appending an <a> tag if
the property is a link.

Finally we yield the item, which at this point should have all the
target data available from Wikipedia.

With our request chain in place, let’s check that the spider is scrap‐
ing our required data:

$ scrapy crawl nwinners_full
2015-... [scrapy] ... started (bot: nobel_winners)
...
2015-... [nwinners_full] DEBUG: Scraped from
 <200 https://www.wikidata.org/wiki/Q155525>

180 | Chapter 6: Heavyweight Scraping with Scrapy

https://docs.python.org/2/library/string.html#format-string-syntax

 {'born_in': '',
 'category': u'Physiology or Medicine',
 'date_of_birth': u'8 October 1927',
 'date_of_death': u'24 March 2002',
 'gender': u'male',
 'link': u'http://en.wikipedia.org/wiki/C%C3%A9sar_Milstein',
 'name': u'C\xe9sar Milstein',
 'country': u'Argentina',
 'place_of_birth': u'Bah\xeda Blanca',
 'place_of_death': u'Cambridge',
 'text': u'C\xe9sar Milstein , Physiology or Medicine, 1984',
 'year': 1984}
2015-... [nwinners_full] DEBUG: Scraped from
 <200 https://www.wikidata.org/wiki/Q193672>
 {'born_in': '',
 'category': u'Peace',
 'date_of_birth': u'1 November 1878',
 'date_of_death': u'5 May 1959',
 'gender': u'male',
 'link': u'http://en.wikipedia.org/wiki/Carlos_Saavedra_Lamas',
 ...

Things are looking good. With the exception of the born_in field,
which is dependent on a name in the main Wikipedia Nobel Prize
winners list having an asterisk, we’re getting all the data we were tar‐
geting. This dataset is now ready to be cleaned by Pandas in the
coming chapter.

Now that we’ve scraped our basic biographical data for the Nobel
Prize winners, let’s go scrape our remaining targets, some biographi‐
cal body text, and a picture of the great man or woman, where
available.

Scrapy Pipelines
In order to add a little personality to our Nobel Prize visualization, it
would be good to have a little biographical text and an image of the
winner. Wikipedia’s biographical pages generally provide these
things, so let’s go about scraping them.

Up to now, our scraped data has been text strings. In order to scrape
images in their various formats, we need to use a Scrapy pipeline.
Pipelines provide a way of post-processing the items we have
scraped, and you can define any number of them. You can write
your own or take advantage of those already provided by Scrapy,
such as the ImagesPipeline we’ll be using.

Scrapy Pipelines | 181

http://doc.scrapy.org/en/latest/topics/item-pipeline.html

In its simplest form, a pipeline need only define a process_item
method. This receives the scraped items and the spider object. Let’s
write a little pipeline to reject genderless Nobel Prize winners (so we
can omit prizes given to organizations rather than individuals) using
our existing nwinners_full spider to deliver the items. First we add
a DropNonPersons pipeline to the pipelines.py module of our
project:

nobel_winners/nobel_winners/settings.py

Define your item pipelines here
#
Don't forget to add your pipeline to the ITEM_PIPELINES setting
See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html

from scrapy.exceptions import DropItem

class DropNonPersons(object):
 """ Remove non-person winners """

 def process_item(self, item, spider):
 if not item['gender']:
 raise DropItem("No gender for %s"%item['name'])
 return item

If our scraped item failed to find a gender property at Wikidata,
it is probably an organization such as the Red Cross. Our visual‐
ization is focused on individual winners, so here we use DropI
tem to remove the item from our output stream.

We need to return the item to further pipelines or for saving by
Scrapy.

As mentioned in the pipelines.py header, in order to add this
pipeline to the spiders of our project, we need to register it in the
settings.py module by adding it to a dict of pipelines and setting
it to active (1):

nobel_winners/nobel_winners/settings.py

BOT_NAME = 'nobel_winners'
SPIDER_MODULES = ['nobel_winners.spiders']
NEWSPIDER_MODULE = 'nobel_winners.spiders'

HTTPCACHE_ENABLED = True
ITEM_PIPELINES = {'nobel_winners.pipelines.DropNonPersons':1}

182 | Chapter 6: Heavyweight Scraping with Scrapy

Now that we’ve got the basic workflow for our pipelines, let’s add a
useful one to our project.

Scraping Text and Images with a Pipeline
We now want to scrape the winners’ biography and photos (see
Figure 6-1), where available. We can scrape the biographical text
using the same method as our last spider, but the photos are best
dealt with by an image pipeline.

We could easily write our own pipeline to take a scraped image
URL, request it from Wikipedia, and save to disk, but to do it prop‐
erly requires a bit of care. For example, we would like to avoid
reloading an image that was recently downloaded or hasn’t changed
in the meantime. Some flexibility in specifying where to store the
images is a useful feature. It would also be good to have the option
of converting the images into a common format (e.g., JPG or PNG)
or of generating thumbnails. Luckily, Scrapy provides an ImagesPi
peline object with all this functionality and more. This is one of its
media pipelines, which includes a FilesPipeline for dealing with
general files.

We could add the image and biography-text scraping to our existing
nwinners_full spider, but that’s starting to get a little large, and seg‐
regating this character data from the more formal categories makes
sense. So we’ll create a new spider called nwinners_minibio that will
reuse parts of the previous spider’s parse method in order to loop
through the Nobel winners.

As usual, when creating a Scrapy spider, our first job is to get the
xpaths for our scraping targets—in this case, where available that’s
the first part of the winners’ biographical text and a photograph of
them. To do this, we fire up Chrome Elements and explore the
HTML source of the biography pages looking for the targets shown
in Figure 6-8.

Scraping Text and Images with a Pipeline | 183

http://doc.scrapy.org/en/latest/topics/media-pipeline.html

Figure 6-8. The target elements for our biography scraping: the first
part of the biography (A) marked by a stop-point (B), and the winner’s
photograph (C)

Investigating with Chrome Elements shows the biographical text
(Figure 6-8 A) is contained in the first paragraphs of the <div> with
id mw-content-text, captured by the xpath //*[@id="mw-content-
text"]/p. There is an empty paragraph, which signals the stop-
point (Figure 6-8 B) of the first section of the biography:

<div id="mw-content-text">
 ...
 <p>...</p>
 <p>...</p>
 <p></p> <---- stop-point -->
 ...
</div>

The exploration shows that the photos (Figure 6-8 C) are contained
in a table of class infobox and are the only image tags () in
that table:

<table class="infobox vcard">
 ...

 ...
</table>

The xpath //table[contains(@class,"infobox")]//img/@src will
get the source address of the image.

184 | Chapter 6: Heavyweight Scraping with Scrapy

As with our first spider, we first need to declare a Scrapy Item to
hold our scraped data. We’ll scrape the bio-link and name of the
winner, which we can use as identifiers for the image and text. We
also need somewhere to store our image-urls (though we will only
scrape one bio-image, I’ll cover the multiple-image use case), the
resultant images references (a file path), and a bio_image field to
store the particular image we’re interested in:

import scrapy
import re

BASE_URL = 'http://en.wikipedia.org'

class NWinnerItemBio(scrapy.Item):
 link = scrapy.Field()
 name = scrapy.Field()
 mini_bio = scrapy.Field()
 image_urls = scrapy.Field()
 bio_image = scrapy.Field()
 images = scrapy.Field()
...

Now we reuse the scraping loop over our Nobel Prize winners (see
Example 6-4 for details), this time yielding a request to our new
get_mini_bio method, which will scrape the image URLs and bio
text:

class NWinnerSpiderBio(scrapy.Spider):

 name = 'nwinners_minibio'
 allowed_domains = ['en.wikipedia.org']
 start_urls = [
 "https://en.wikipedia.org/wiki/List_of_Nobel_" \
 "laureates_by_country"
]

 def parse(self, response):

 filename = response.url.split('/')[-1]
 h2s = response.xpath('//h2')

 for h2 in h2s:
 country = h2.xpath('span[@class="mw-headline"]'\
 'text()').extract()
 if country:
 winners = h2.xpath('following-sibling::ol[1]')
 for w in winners.xpath('li'):
 wdata = {}

Scraping Text and Images with a Pipeline | 185

 wdata['link'] = BASE_URL + \
 w.xpath('a/@href').extract()[0]
 # Process the winner's bio page with
 # the get_mini_bio method
 request = scrapy.Request(wdata['link'],
 callback=self.get_mini_bio)
 request.meta['item'] = NWinnerItem(**wdata)
 yield request

Our get_mini_bio method will add any available photo URLs to the
image_urls list and add all paragraphs of the biography up to the
<p></p> stop-point to the item’s mini_bio field:

...
 def get_mini_bio(self, response):
 """ Get the winner's bio-text and photo """

 BASE_URL_ESCAPED = 'http:\/\/en.wikipedia.org'
 item = response.meta['item']
 item['image_urls'] = []
 img_src = response.xpath(\
 '//table[contains(@class,"infobox")]//img/@src')
 if img_src:
 item['image_urls'] = ['http:' +\
 img_src[0].extract()]
 mini_bio = ''
 paras = response.xpath(
 '//*[@id="mw-content-text"]/p[text() or' \
 'normalize-space(.)=""]').extract()

 for p in paras:
 if p == '<p></p>': # the bio-intros stop-point
 break
 mini_bio += p

 # correct for wiki-links
 mini_bio = mini_bio.replace('href="/wiki', 'href="'
 + BASE_URL + '/wiki')
 mini_bio = mini_bio.replace('href="#',\
 item['link'] + '#')
 item['mini_bio'] = mini_bio
 yield item

Targets the first (and only) image in the table of class infobox
and gets its source (src) attribute (e.g., <img src=//

upload.wikimedia.org/…/Max_Perutz.jpg…).

This xpath gets all the paragraphs in the <div> with id mw-
content-text. If the paragraphs are empty (text() == False),

186 | Chapter 6: Heavyweight Scraping with Scrapy

then the normalize-space(.) command is used to force the
contents of the paragraph (. represents the p-node in question)
to an empty string. This is to make sure any empty paragraph
matches the stop-point marking the end of the intro section of
the biography.

Iterates through the available paragraphs, breaking on the
empty paragraph stop-point.

Replaces Wikipedia’s internal hrefs (e.g., /wiki/…) with the full
addresses our visualization will need.

With our bio-scraping spider defined, we need to create its comple‐
mentary pipeline, which will take the image URLs scraped and con‐
vert them into saved images. We’ll use Scrapy’s images pipeline for
this job.

The ImagesPipeline shown in Example 6-6 has two main methods,
get_media_requests, which generates the requests for the image
URLs, and item_completed, called after the requests have been
consumed.

Example 6-6. Scraping images with the image pipeline

import scrapy
from scrapy.contrib.pipeline.images import ImagesPipeline
from scrapy.exceptions import DropItem

class NobelImagesPipeline(ImagesPipeline):

 def get_media_requests(self, item, info):

 for image_url in item['image_urls']:
 yield scrapy.Request(image_url)

 def item_completed(self, results, item, info):

 image_paths = [x['path'] for ok, x in results if ok]
 if image_paths:
 item['bio_image'] = image_paths[0]

 return item

This takes any image URLs scraped by our nwinners_minibio
spider and generates an HTTP request for their content.

Scraping Text and Images with a Pipeline | 187

http://bit.ly/1sK2cys

After the image URL requests have been made, the results are
delivered to the item_completed method.

This Python list-comprehension filters the list of result tuples
(of form [(True, Image), (False, Image) …]) for those that
were successful and stores their file paths relative to the direc‐
tory specified by the IMAGES_STORE variable in settings.py.

Now that we have the spider and pipeline defined, we just need to
add the pipeline to our settings.py module and set the
IMAGES_STORE variable to the directory we want to save the images
in:

nobel_winners/nobel_winners/settings.py

...
ITEM_PIPELINES = {'nobel_winners.pipelines'\
 '.NobelImagesPipeline':1}
IMAGES_STORE = 'images'

Let’s run our new spider from the nobel_winners root directory of
our project, and check its output:

$ scrapy crawl nwinners_minibio -o minibios.json
...
2015-... DEBUG: Scraped from <200 http:.../Albert_Claude>
{'image_urls': [],
 'link': u'http://en.wikipedia.org/wiki/Albert_Claude',
 'mini_bio': u'<p>Albert Claude (24 August 1899...
 Belgian

2015-... DEBUG: Scraped from <200 http:.../Brian_P._Schmidt>
{ 'bio_image': 'full/a5f763b828006e704cb291411b8b643bfb91.jpg',
 'image_urls': [u'http://upload.wiki...Brian_Schmidt.jpg'],
 'link': u'http://en.wikipedia.org/wiki/Brian_P._Schmidt',
 'mini_bio': u'<p>Brian Paul Schmidt...
...

We can see that scraping Albert Claude’s biography page failed to
turn up an image (a quick trip to Wikipedia confirms that it’s miss‐
ing), but Brian Schmidt’s page came up just fine. The image was
stored in image_urls and successfully processed, loading the JPG
file stored in the images directory we specified with IMAGE_STORE
with a relative path (full/a5f763b828006e704cb291411b8b643bfb1
886c.jpg). The filename is, conveniently enough, a SHA1 hash of
the image’s URL, which allows the image pipeline to check for exist‐
ing images, enabling it to prevent redundant requests.

188 | Chapter 6: Heavyweight Scraping with Scrapy

https://en.wikipedia.org/wiki/Secure_Hash_Algorithm

A quick listing of our images directory shows a nice array of Wiki‐
pedia Nobel Prize winner images, ready to be used in our web
visualization:

$ (nobel_winners) tree images
images
└── full
 ├── 0512ae11141584da1262661992a1b05dfb20dd52.jpg
 ├── 092a92689118c16b15b1613751af422439df2850.jpg
 ├── 0b6a8ca56e6ff115b7d30087df9c21da09684db1.jpg
 ├── 1197aa95299a1fec983b3dbdeaeb97a1f7e545c9.jpg
 ├── 1f6fb8e9e2241733da47328291b25bd1a78fa588.jpg
 ├── 272cf1b089c7a28ea0109ad8655bc3ef1c03fb52.jpg
 ├── 28dcc7978d9d5710f0c29d6dfcf09caa7e13a1d0.jpg
 ...

As we’ll see in Chapter 15, we will be placing these in the static
folder of our web app, ready to be accessed via the winner’s
bio_image field.

With our images and biography text to hand, we’ve successfully
scraped all the targets we set ourselves at the beginning of the chap‐
ter (see Example 6-1 and Figure 6-1). Now, it’s time for a quick sum‐
mary before moving on to clean this inevitably dirty data with help
from Pandas.

Specifying Pipelines with Multiple Spiders
The pipelines enabled in settings.py are applied to all spiders in
our Scrapy project. Often, if you have a number of spiders, you’ll
want to be able to specify which pipelines are applied on a spider-
by-spider basis. There are a number of ways to achieve this, but the
best I’ve seen is to use the spiders’ custom_settings class property
to set the ITEM_PIPELINES dictionary instead of setting it in set
tings.py. In the case of our nwinners_minibio spider, this means
adapting the NWinnerSpiderBio class like so:

class NWinnerSpiderBio(scrapy.Spider):
 name = 'nwinners_minibio'
 allowed_domains = ['en.wikipedia.org']
 start_urls = [
 "http://en.wikipedia.org/wiki"\
 "List_of_Nobel_laureates_by_country"
]

 custom_settings = {
 'ITEM_PIPELINES':\
 {'nobel_winners.pipelines.NobelImagesPipeline':1}

Scraping Text and Images with a Pipeline | 189

http://bit.ly/28KVdWr

 }

 # ...

Now the NobelImagesPipeline pipeline will only be applied while
scraping the Nobel Prize winners’ biographies.

Summary
In this chapter we produced two Scrapy spiders that managed to
grab the simple statistical dataset of our Nobel Prize winners plus
some biographical text (and, where available, a photograph, to add
some color to the stats). Scrapy is a powerful library that takes care
of everything you could need in a full-fledged scraper. Although the
workflow requires more effort to implement than doing some hack‐
ing with BeautifulSoup, Scrapy has far more power and comes into
its own as your scraping ambitions increase. All Scrapy spiders fol‐
low the standard recipe demonstrated here, and the workflow
should become routine after you program a few.

I hope this chapter has conveyed the rather hacky, iterative nature of
scraping, and some of the quiet satisfaction that can be had when
producing relatively clean data from the unpromising mound of
stuff so often found on the Web. The fact is that now and for the
foreseeable future, the large majority of interesting data (the fuel for
the art and science of data visualization) is trapped in a form that is
unusable for the web-based visualizations that this book focuses on.
Scraping is, in this sense, an emancipating endeavor.

The data we scraped, much of it human-edited, will certainly have
some errors—from badly formatted dates to categorical anomalies
to missing fields. Making that data presentable is the focus of the
next Pandas-based chapters. But first, we need a little introduction
to Pandas and its building block, NumPy.

190 | Chapter 6: Heavyweight Scraping with Scrapy

PART III

Cleaning and Exploring Data
with Pandas

In this part of the book, in the second phase of our toolchain (see
Figure III-1) we take the Nobel Prize dataset we just scraped with
Scrapy in Chapter 6 and first clean it up, then explore it for interest‐
ing nuggets. The principal tools we’ll be using are the large Python
libraries Matplotlib and Pandas.

Pandas will be introduced in the next couple of chapters, along with
its building block, NumPy. In Chapter 9 we’ll use Pandas to clean
the Nobel dataset. Then in Chapter 11, in conjunction with Python’s
plotting library Matplotlib, we’ll use it to explore it.

In Part IV we’ll see how to deliver the freshly cleaned Nobel Prize
dataset to the browser, using Python’s Flask web server.

Figure III-1. Our dataviz toolchain: cleaning and exploring the data

1 Python’s scripted ease of use comes at the cost of raw speed. By wrapping fast, low-level
libraries, initiatives like NumPy aim for simple, cruft-free programming and blinding
performance.

CHAPTER 7

Introduction to NumPy

This chapter aims to introduce the Numeric Python library
(NumPy) to those unacquainted. NumPy is the key building block of
Pandas, the powerhouse data analysis library that we will be using in
the upcoming chapters to clean and explore our recently scraped
Nobel Prize dataset (see Chapter 6). A basic understanding of Num‐
Py’s core elements and principles is important if you are to get the
most out of Pandas. Therefore, the emphasis of the chapter is to
provide a foundation for the upcoming introduction to Pandas.

NumPy is a Python module that allows access to very fast, multi-
dimensional array manipulation, implemented by low-level libraries
written in C and Fortran.1 Python’s native performance with large
quantities of data is relatively slow, but NumPy allows you to per‐
form parallel operations on large arrays all at once, making it very
fast. Given that NumPy is the chief building block of most of the
heavyweight Python data-processing libraries, Pandas included, it’s
hard to argue with its status as linchpin of the Python data-
processing world.

In addition to Pandas, NumPy’s huge ecosystem includes Science
Python (SciPy), which supplements NumPy with hardcore science
and engineering modules; Scikit-learn, which adds a host of modern
machine-learning algorithms in such domains as classification and

193

2 NumPy is used to implement some very advanced math, so don’t expect to understand
everything you see online—just the building blocks.

3 This assumes the arrays meet shape and type constraints.

4 Importing all module variables into your namespace using * is almost always a bad
idea.

feature extraction; and many other specialized libraries that use
NumPy’s multidimensional arrays as their primary data objects. In
this sense, basic NumPy mastery can massively extend your Python
range in the data-processing realm.

The key to understanding NumPy is its arrays. If you understand
how these work and how to manipulate them, then a lot of other
stuff should follow painlessly.2 The next few sections will cover basic
array manipulation with a few examples of NumPy in action, setting
the scene for the introduction of Panda’s datasets in Chapter 8.

The NumPy Array
Everything in NumPy is built around its homogeneous, multidi‐
mensional ndarray object. Operations on these arrays are per‐
formed using very fast, compiled libraries, allowing NumPy to
massively outperform native Python. Among other things you can
perform standard arithmetic on these arrays, much as you would a
Python int or float.3 In the following code, a whole array is added
to itself as easily and as quickly as adding two integers:

import numpy as np

a = np.array([1, 2, 3])
a + a
output array([2, 4, 6])

The standard way to use the NumPy library and much preferred
to "from numpy import *".4

Automatically converts a Python list of numbers.

Behind the scenes, NumPy can leverage the massively parallel com‐
putation available to modern CPUs allowing, for example, large
matrices (2D arrays) to be crunched in acceptable times.

The key properties of the NumPy ndarray are its number of dimen‐
sions (ndim), shape (shape), and numeric type (dtype). The same

194 | Chapter 7: Introduction to NumPy

array of numbers can be reshaped in place, which will sometimes
involve changing the array’s number of dimensions. Let’s demon‐
strate some reshaping with a little eight-member array. We’ll use a
print_array_details method to output the key array properties:

def print_array_details(a):
 print('Dimensions: %d, shape: %s, dtype: %s'\
 %(a.ndim, a.shape, a.dtype))

First we’ll create our one-dimensional array. As the printed details
show, by default this has a 64-bit integer numeric type (int64):

In [1]: a = np.array([1, 2, 3, 4, 5, 6, 7, 8])

In [2]: a
Out[2]: array([1, 2, 3, 4, 5, 6, 7, 8])

In [3]: print_array_details(a)
Dimensions: 1, shape: (8,), dtype: int64

Using the reshape method, we can change the shape and number of
dimensions of a. Let’s reshape a into a two-dimensional array com‐
posed of two four-member arrays:

In [4]: a = a.reshape([2, 4])
In [5]: a
Out[5]:
array([[1, 2, 3, 4],
 [5, 6, 7, 8]])

In [6]: print_array_details(a)
Dimensions: 2, shape: (2, 4), dtype: int64

An eight-member array can also be reshaped into a three-
dimensional array:

In [7]: a = a.reshape([2, 2, 2])

In [8]: a
Out[8]:
array([[[1, 2],
 [3, 4]],

 [[5, 6],
 [7, 8]]])

In [9]: print_array_details(a)
Dimensions: 3, shape: (2, 2, 2), dtype: int64

The shape and numeric type can be specified on creation of the
array or later. The easiest way to change an array’s numeric type is

The NumPy Array | 195

5 A more memory-efficient and performant way involves manipulating the array’s view,
but it does involve some extra steps. See this Stack Overflow article for some examples
and a discussion of the pros and cons.

by using the astype method to make a resized copy of the original
with the new type.5

In [0]: x = np.array([[1, 2, 3], [4, 5, 6]], np.int32)
In [1]: x.shape
Out[1]: (2, 3)
In [2]: x.shape = (6,)
In [3]: x
Out[3]: array([1, 2, 3, 4, 5, 6])
In [4] x = x.astype('int64')
In [5]: x.dtype
Out[5]: dtype('int64')

The array will convert a nested list of numbers into a suitably
shaped multidimensional form.

Creating Arrays
As well as creating arrays with lists of numbers, NumPy provides
some utility functions to create arrays with a specific shape. zeros
and ones are the most common functions used, creating prefilled
arrays. Here’s a couple of examples. Note that the default dtype of
these methods is a 64-bit float (float64):

In [32]: a = np.zeros([2,3])
In [33]: a
Out[33]:
array([[0., 0., 0.],
 [0., 0., 0.]])

In [34]: a.dtype
Out[34]: dtype('float64')

In [35]: np.ones([2, 3])
Out[35]:
array([[1., 1., 1.],
 [1., 1., 1.]])

The faster empty method just takes a memory block without the fill
overhead, leaving the initialization up to you (use with caution):

196 | Chapter 7: Introduction to NumPy

http://stackoverflow.com/questions/4389517/in-place-type-conversion-of-a-numpy-array

empty_array = np.empty((2,3)) # create an uninitialized array

empty_array
Out[3]:
array([[6.93185732e-310, 2.52008024e-316, 4.71690401e-317],
 [2.38085057e-316, 6.93185752e-310, 6.93185751e-310]])

Another useful utility function is random, found along with some
useful siblings in NumPy’s random module. This creates a shaped
random array:

>>> np.random.random((2,3))
>>> Out:
array([[0.97519667, 0.94934859, 0.98379541],
 [0.10407003, 0.35752882, 0.62971186]])

A 2×3 array of random numbers within the range 0 <= x < 1.

The handy linspace creates a specified number of evenly spaced
samples over a set interval. arange is similar but uses a step-size
argument.

np.linspace(2, 10, 5) # 5 numbers in range 2-10
Out: array([2., 4.,6., 8., 10.])

np.arange(2, 10, 2) # from 2 to 10 (exlusive) with step-size 2.
Out: array([2, 4, 6, 8])

Note that unlike arange, linspace is inclusive of the upper value
and that the array’s datatype is the default float64.

Array Indexing and Slicing
One-dimensional arrays are indexed and sliced much as Python
lists:

a = np.array([1, 2, 3, 4, 5, 6])
a[2] # Out: 3
a[3:5] # Out: array([4, 5])
every second item from 0-4 set to 0
a[:4:2] = 0 # Out: array([0, 2, 0, 4, 5, 6])
a[::-1] # Out: array([6, 5, 4, 3, 2, 1]), reversed

Indexing multidimensional arrays is similar to the 1-D form. Each
dimension has its own indexing/slicing operation and these are

The NumPy Array | 197

6 There is a shorthand dot notation (e.g., [..1:3]) to select all indices.

specified in a comma-separated tuple.6 Figure 7-1 shows how this
works.

Figure 7-1. Multidimensional indexing with NumPy

Note that if the number of objects in the selection tuple is less than
the number of dimensions, the remaining dimensions are assumed
to be fully selected (:). Ellipsis can also be used as a shorthand for
full selection of all indices, expanding to the required number of :
objects:

a = np.arange(8)
a.shape = (2, 2, 2)
a[1] == a[1,:] == a[1,:,:]
a[...,0] == a[:,:,0]

A Few Basic Operations
One of the really cool things about NumPy arrays is that you can
perform basic (and not so basic) math operations in much the same
way that you would with normal numeric variables. Figure 7-2
shows the use of some overloaded arithmetic operators on a two-
dimensional array. The simple mathematical operations are applied
to all members of the array. Note that where the array is divided by a
floating-point value (2.0), the result is automatically converted to a
float type (float64). Being able to manipulate arrays as easily as

198 | Chapter 7: Introduction to NumPy

single numbers is a huge strength of NumPy and a large part of its
expressive power.

Figure 7-2. A few basic math operations on a two-dimensional NumPy
array

Boolean operators work in a similar way to the arithmetic ones. As
we’ll see in the next chapter, this is a very useful way to create the
boolean masks often used in Pandas. Here’s a little example:

a = np.array([45, 65, 76, 32, 99, 22])
a < 50
Out[69]: array([True, False, False, True, False, True]
 , dtype=bool)

Arrays also have a number of useful methods, a selection of which is
demonstrated in Example 7-1. You can get a comprehensive run‐
down in the official NumPy docs.

Example 7-1. Some array methods

a = np.arange(8).reshape((2,4))
array([[0, 1, 2, 3],
[4, 5, 6, 7]])

a.min(axis=1)
array([0, 4])
a.sum(axis=0)
array([4, 6, 8, 10])
a.mean(axis=1)
array([1.5, 5.5])
a.std(axis=1)
array([1.11803399, 1.11803399])

Average along second axis.

The standard deviation of [0, 1, 2, 3],…

There are also a large number of built-in array functions.
Example 7-2 demonstrates a selection of these, and you will find a

The NumPy Array | 199

http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html

comprehensive list of NumPy’s built-in mathematical routines at the
official NumPy site.

Example 7-2. Some NumPy array math functions

Trigonometric functions
pi = np.pi
a = np.array([pi, pi/2, pi/4, pi/6])

np.degrees(a) # radians to degrees
Out: array([180., 90., 45., 30.,])

sin_a = np.sin(a)
Out: array([1.22464680e-16, 1.00000000e+00,
 7.07106781e-01, 5.00000000e-01])
Rounding
np.round(sin_a, 7) # round to 7 decimal places
Out: array([0., 1., 0.7071068, 0.5])

Sums, products, differences
a = np.arange(8).reshape((2,4))
array([[0, 1, 2, 3],
[4, 5, 6, 7]])

np.cumsum(a, axis=1) # cumulative sum along second axis
array([[0, 1, 3, 6],
[4, 9, 15, 22]])

np.cumsum(a) # without axis argument, array is flattened
array([0, 1, 3, 6, 10, 15, 21, 28])

Note the floating-point rounding error for sin(pi).

Creating Array Functions
Whether you’re using Pandas or one of the many Python data-
processing libraries, such as Scipy, scikit-learn, or PyBrain, chances
are the core data structure being used is the NumPy array. The abil‐
ity to craft little array processing functions is therefore a great addi‐
tion to your data-processing toolkit and the data visualization
toolchain. Often a short Internet search will turn up a community
solution, but there’s a lot of satisfaction to be gained from crafting
your own, besides being a great way to learn. Let’s see how we can
harness the NumPy array to calculate a moving average. A moving
average is a series of averages based on a moving window of the last

200 | Chapter 7: Introduction to NumPy

http://docs.scipy.org/doc/numpy/reference/routines.math.html
http://docs.scipy.org/doc/numpy/reference/routines.math.html
https://en.wikipedia.org/wiki/Moving_average

7 NumPy has a convolve method, which is the easiest way to calculate a simple moving
average but less instructive. Also, Pandas has a number of specialized methods for this.

n values, where n is variable, also known as a moving mean or rolling
mean.

Calculating a Moving Average
Example 7-3 shows the few lines needed to calculate a moving aver‐
age on a one-dimensional NumPy array.7 As you can see, it’s nice
and concise, but there’s a fair amount going on in those few lines.
Let’s break it down a bit.

Example 7-3. A moving average with NumPy

def moving_average(a, n=3):
 ret = np.cumsum(a, dtype=float)
 ret[n:] = ret[n:] - ret[:-n]
 return ret[n - 1:] / n

The function receives an array a and number n specifying the size
of the moving window.

We first calculate the cumulative sum of the array using NumPy’s
built-in method.

a = np.arange(6)
array([0, 1, 2, 3, 4, 5])
csum = np.cumsum(a)
csum
Out: array([0, 1, 3, 6, 10, 15])

Starting at the nth index of the cumulative sum array, we subtract
the i–nth value for all i, which means i now has the sum of the last n
values of a, inclusive. Here’s an example with a window of size three:

a = array([0, 1, 2, 3, 4 , 5])
csum = array([0, 1, 3, 6, 10, 15])
csum[3:] = csum[3:] - csum[:-3]
csum = array([0, 1, 3, 6, 9, 12])

Comparing the array a with the final array csum, index 5 is now the
sum of the window [3, 4, 5].

Because a moving average only makes sense for index (n–1) onward,
it only remains to return these values, divided by the window size n
to give the average.

Creating Array Functions | 201

The moving_average function takes a bit of time to get but is a good
example of the concision and expressiveness that can be achieved
with NumPy arrays and array slicing. You could easily write the
function in vanilla Python, but it would likely be a fair bit more
involved and, crucially, be much slower for arrays of significant size.

Putting the function to work:

a = np.arange(10)
moving_average(a, 4)
Out[98]: array([1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5])

Summary
This chapter laid the foundations of NumPy, focusing on its build‐
ing block, the NumPy array or ndarray. Being proficient with
NumPy is a core skill for any Pythonista working with data. It
underpins most of Python’s hardcore data-processing stack, so for
this reason alone, you should be comfortable with its array
manipulations.

Being comfortable with NumPy will make Pandas work that much
easier and open up the rich NumPy ecosystem of scientific, engi‐
neering, machine learning, and statistical algorithmics to your Pan‐
das workflow. Although Pandas hides its NumPy arrays behind data
containers such as its DataFrame and Series, which are adapted to
deal with heterogeneous data, these containers behave for the most
part like NumPy arrays and will generally do the right thing when
asked. Knowing that ndarrays are at its core also helps when you are
trying to frame problems for Pandas—ultimately the requested data
manipulation has to play nicely with NumPy. Now that we’ve got its
building blocks in place, let’s see how Pandas extends the homoge‐
neous NumPy array into the realm of heterogeneous data, where
much of data visualization work takes place.

202 | Chapter 7: Introduction to NumPy

CHAPTER 8

Introduction to Pandas

Pandas is a key element in our dataviz toolchain, as we will use it for
both cleaning and exploring our recently scraped dataset (see Chap‐
ter 6). The last chapter introduced NumPy, the Python array pro‐
cessing library that is the foundation of Pandas. Before we move on
to applying Pandas, this chapter will introduce its key concepts and
show how it interacts with existing data files and database tables.
The rest of your Pandas learning will be on the job over the next
couple of chapters.

Why Pandas Is Tailor-Made for Dataviz
Take any dataviz, whether web-based or in print, and chances are
that the data visualized was at one point stored in row-columnar
form in a spreadsheet like Excel, a CSV file, or HDF5. There are cer‐
tainly visualizations, like network graphs, for which row-columnar
data is not the best form, but they are in the minority. Pandas is
tailor-made to manipulate row-columnar data tables with its core
datatype, the DataFrame, which is best thought of as a very fast, pro‐
grammatic spreadsheet.

Why Pandas Was Developed
First revealed by Wes Kinney in 2008, Pandas was built to solve a
particular problem—namely, that while Python was great for manip‐
ulating data, munging it, and preparing it, it was weak in the area of

203

data analysis and modeling, certainly compared with big hitters like
R.

Pandas is designed to work with heterogeneous data like that found
in row-columnar spreadsheets, but cleverly manages to leverage
some of the speed of Python’s NumPy, originally intended for the
sort of homogeneous numeric arrays used by mathematicians, phys‐
icists, computer graphics, and the like. Combined with the IPython
interpreter-on-steroids and the Matplotlib plotting library (and
family), Pandas represents a first-class interactive data analysis tool.
Because it’s part of the NumPy ecosystem, its data modeling is easily
enhanced by such libraries as SciPy, Statsmodel, and Scikit-learn, to
name but a few.

Heterogeneous Data and Categorizing
Measurements
I’ll cover the core concepts of Pandas in the next section, focusing
on the DataFrame and how to get your data into and out of it via the
common datastores, CSV files and SQL databases. But first let’s take
a little diversion to consider what we really mean by the heterogene‐
ous datasets that Pandas was designed to work with and that are the
mainstay of data visualizers.

Chances are that a visualization, maybe a bar chart or line graph
used to illustrate an article or a modern web dashboard, presents the
results of measurements in the real world, the price of commodities
as they change over time, changes in rainfall over a year, voting
intentions by ethnic group, and so forth. These measurements can
be broadly broken into two groups, numerical and categorical.
Numerical values can be divided into interval and ratio scales, and
categorical values can in turn be divided into nominal and ordinal
measurements. This gives four broad categories of observation avail‐
able to the data visualizer.

Let’s take a set of tweets as an example in order to draw out these
measurement categories. Each tweet has various data fields:

{
 "text": "#Python and #JavaScript sitting in a tree...",
 "id": 2103303030333004303,
 "favorited": true,
 "filter_level":"medium",
 "created_at": "Wed Mar 23 14:07:43 +0000 2015",

204 | Chapter 8: Introduction to Pandas

 "retweet_count":23,
 "coordinates":[-97.5, 45.3]
 ...
}

The text and id fields are unique indicators. The former might
contain categorical information (e.g., the category of tweets
containing the #Python hashtag), and the latter might be used to
create a category (e.g., the set of all users retweeting this tweet),
but they are not per se visualizable fields.

favorited is Boolean, categorical information, dividing the
tweets into two sets. This would count as a nominal category, as
it can be counted but not ordered.

filter_level is also categorical information, but it is ordinal.
There is an order, low→medium→high, to the filter levels.

The created_at field is a timestamp, a numerical value on an
interval scale. We would probably want to order the tweets on
this scale, something Pandas does automatically, and then
maybe box into broader intervals, say by the day or week.
Again, Pandas makes this trivial.

retweet_count is likewise on a numerical scale, but it is a ratio
one. A ratio scale, as opposed to an interval scale, has a mean‐
ingful concept of zero—in this case, no retweets. Our cre
ated_at timestamp, on the other hand, can have an arbitrary
baseline (e.g., unix-time or Gregorian year 0), much in the same
way as temperature scales, with 0 degrees Celsius being the
same as 173 degrees Kelvin.

coordinates, if available, has two numerical scales for longitude
and latitude. Whereas longitude is taken arbitrarily from the
Greenwich Meridian, a historical artifact of the British Empire,
the line of latitude from the equator is nonarbitrary in as much
as the earth’s pole disambiguates. Both are interval scales,
though, as it doesn’t make much sense to speak of ratios of
degrees.

So a small subset of our humble tweet’s fields contains heterogene‐
ous information covering all the generally accepted divisions of
measurement. Whereas the NumPy array is generally used for

Heterogeneous Data and Categorizing Measurements | 205

homogeneous, numerical number crunching, Pandas is designed to
deal with categorical data, time series, and items that reflect the het‐
erogeneous nature of real-world data. This makes it a great fit for
the data visualization.

Now that we know the type of data Pandas is designed to deal with,
let’s look at the data structures it uses.

The DataFrame
The first step in a Pandas session is usually to load some data into a
DataFrame. We’ll cover the various ways we can do this in a later sec‐
tion. For now, let’s read our nobel_winners.json JSON data from a
file. read_json returns a DataFrame, parsed from the JSON file
specified. By convention, DataFrame variables start with df:

import pandas as pd

df = pd.read_json('data/nobel_winners.json')

With our DataFrame in hand, let’s inspect its content. A quick way to
get the row-columnar structure of the DataFrame is to use its head
method to show (by default) the top five items. Figure 8-1 shows the
output from an IPython (or Jupyter) Notebook, with key elements
of the DataFrame highlighted.

Figure 8-1. The key elements of a Pandas DataFrame

Indices
The DataFrame’s columns are indexed by a columns property, which
is a Pandas index instance. Let’s select the columns in Figure 8-1:

In [0]: df.columns
Out[0]: Index([u'born_in', u'category', ... , dtype='object')

206 | Chapter 8: Introduction to Pandas

http://jupyter.org/

Initially, Pandas rows have a single numeric index (Pandas can han‐
dle multiple indexes if necessary) that can be accessed by the index
property:

In [1]: df.index
Out[1]: Int64Index([0, 1, 2, 3, 4, 5, 6, 7, ...], dtype='int64')

As well as integers, row indices can be strings, DatetimeIndices, or
PeriodIndices for time-based data, and so on. Often, to aid selec‐
tions, a column of the DataFrame will be set to the index via the
set_index method. In the following code, we first use the
set_index method to set our Nobel DataFrame’s index to the name
column and then use the loc method to select a row by the index
label (name in this case):

In [2] df = df.set_index('name')
In [3] df.loc['Albert Einstein']
Out[3]:
award_age 42
category Physics
...
year 1921
Name: Albert Einstein, dtype: object

df = df.reset_index()

Set the index to the name column.

You can now select a row by the name label.

Return the index to original integer-based state.

Rows and Columns
The rows and columns of a DataFrame are stored as Pandas Series,
a heterogeneous counterpart to NumPy’s array. These are essentially
a labeled one-dimensional array that can contain any datatype from
integers, strings, and floats to Python objects and lists.

There are three ways to select a row from the DataFrame. We’ve seen
the loc method, which selects by label. There’s also an iloc method,
which selects by position. So to select the row in Figure 8-1, we grab
row number two:

The DataFrame | 207

http://bit.ly/1UT76Cl

1 Only if the column name is a string without spaces.

In [4] df.iloc[2]
Out[4]:
born_in Bosnia and Herzegovina
category Chemistry
...
name Vladimir Prelog *
year 1975
Name: 2, dtype: object

There is also an ix convenience method, which combines label
access by loc with access by position iloc. ix prioritizes access by
label, with a fallback to access by integer position if you use it with
an integer and the axis (e.g., our Nobel Prize names column) is not
an integer. Here are a few examples:

In [5] df.ix[2] # equivalent to df.iloc[2]
Out[5]:
...
name Vladimir Prelog *
...
In [6] df = df.set_index('name') # index is now a name string
In [7] df.ix['Albert Einstein'] # == df.loc['Albert Einstein']
Out[7]:
...
Name: Albert Einstein, dtype: object
In [8] df.ix[2] # numeric access defaults to +iloc+
Out[8]:
...
name Vladimir Prelog *

ix is a convenient method, but there is scope for confusion when it’s
used with integer axes. If in doubt, it’s best to be explicit and use
either loc or iloc.

You can grab a column of your DataFrame using dot notation1 or
conventional array access by keyword string. This returns a Pandas
Series with all the column fields with their DataFrame indices
preserved:

In [9] gender_col = df.gender # or df['gender']
In [10] type(gender_col)
Out[10] pandas.core.series.Series
In [11] gender_col.head() # grab the Series' first five items
Out[11]:
0 male #index, object
1 male

208 | Chapter 8: Introduction to Pandas

2 male
3 male
4 male
Name: gender, dtype: object

Selecting Groups
There are various ways we can select groups (or subsets of rows) of
our DataFrame, returning a new, filtered DataFrame. Often we want
to select all rows with a specific column value (e.g., all rows with cat‐
egory Physics). One way to do this is to use the DataFrame’s groupby
method to group a column (or list of columns) and then use the
get_group method to select the required group. Let’s use these two
methods to select all Nobel Physics Prize winners:

In [12] df = df.groupby('category')
In [13] df.groups.keys()
Out[13]:
[u'Physiology or Medicine',
 u'Literature',
 u'Economics',
 ...

In [14] phy_group = df.get_group('Physics')
In [15] phy_group.head()
Out[15]:
 born_in category date_of_birth date_of_death gender \
13 Physics 6 November 1932 male
19 Physics 7 October 1885 18 November 1962 male
23 Physics July 9, 1926 male
24 Physics 19 June 1922 8 September 2009 male
47 Physics 3 May 1902 7 January 1984 male
...

Another way to select row subsets is to use a Boolean mask to create
a new DataFrame. You can apply Boolean operators to all rows in a
DataFrame in much the same way as you can to all members of a
NumPy array:

In [16] df.category == 'Physics'
Out[16]:
0 False
1 False
...
10 True
11 False
...

The DataFrame | 209

The resulting Boolean mask can then be applied to the original Data
Frame to select a subset of its rows:

In [17]: df[df.category == 'Physics']
Out[17]:
 born_in category date_of_birth ... gender \
13 Physics 6 November 1932 ... male
19 Physics 7 October 1885 ... male
23 Physics July 9, 1926 ... male
...

We’ll cover a lot more examples of data selections in the coming
chapters. For now, let’s see how we create DataFrames from existing
data and how to save the results of our data frame manipulations.

Creating and Saving DataFrames
The easiest way to create a DataFrame is to use a Python dictionary.
It’s also a way you won’t be using very often, as you will likely be
accessing your data from files or databases. Nevertheless, it has its
use cases.

By default, we specify the columns separately, in the following
example creating three rows with name and category columns.

df = pd.DataFrame({
 'name': ['Albert Einstein', 'Marie Curie',\
 'William Faulkner'],
 'category': ['Physics', 'Chemistry', 'Literature']
 })

We can use the from_dict method to allow us to use our preferred
record-based object arrays. from_dict has an orient argument to
allow us to specify record-like data, but Pandas is smart enough to
work out the data form:

df = pd.DataFrame.from_dict([
 {'name': 'Albert Einstein', 'category':'Physics'},
 {'name': 'Marie Curie', 'category':'Chemistry'},
 {'name': 'William Faulkner', 'category':'Literature'}
])

Here we pass in an array of objects, each corresponding to a row
in our DataFrame.

The methods just shown produce an identical DataFrame:

210 | Chapter 8: Introduction to Pandas

df.head()
Out:
 category name
0 Physics Albert Einstein
1 Chemistry Marie Curie
2 Literature William Faulkner

As mentioned, you probably won’t be creating DataFrames from
Python containers directly. Instead, you will probably use one of the
Pandas data reading methods.

Pandas has an impressive array of read_[format]/to_[format]
methods, covering most conceivable data-loading use cases, from
CSV through binary HDF5 to SQL databases. We’ll cover the subset
most relevant to dataviz work. For a full list, see the Pandas
documentation.

Note that by default Pandas will try to convert the loaded data sensi‐
bly. The convert_axes (try to convert the axes to the proper
dtypes), dtype (guess datatype), and convert_dates arguments to
the read methods are all True by default. See here for a full list of
options.

Let’s cover file-based DataFrames first, then see how to interact with
(No)SQL databases.

JSON
Loading data from our preferred JSON format is trivial in Pandas:

df = pd.read_json('file.json')

There are various forms the JSON file can take, specified by an
optional orient argument, one of [split, records, index, columns,
values]. An array of records, our standard form, will be detected:

[{"name":"Albert Einstein", "category":"Physics", ...},
{"name":"Marie Curie", "category":"Chemistry", ... } ...]

The default for a JSON object is columns, in the form:

{"name":{"0":"Albert Einstein","1":"Marie Curie" ... },
"category":{"1","Physics","2":"Chemistry" ... }}

As discussed, for web-based visualization work, particularly D3,
record-based JSON is the most common way of passing row-
columnar data to the browser.

Creating and Saving DataFrames | 211

http://pandas.pydata.org/pandas-docs/dev/io.html
http://pandas.pydata.org/pandas-docs/dev/io.html
http://pandas.pydata.org/pandas-docs/stable/io.html#reading-json

2 If you have problems, you might try a subset of your data here for better feedback.
3 D3 takes a number of other data formats, such as hierarchical (tree type) data or node

and link graph formats. Here is a pretty comprehensive list.

Note that you will need valid JSON files to work
with Pandas because the read_json method and
Python JSON parsers in general tend to be fairly
unforgiving, and exceptions not as informative
as they might be.2 A common JSON error is fail‐
ing to enclose keys in double-quote marks or
using single quotes where double quotes are
expected. The latter is particularly common for
those coming from languages where single- and
double-string quotes are essentially interchange‐
able and one reason why you should never build
JSON documents yourself—always use an offi‐
cial or well-respected library.

There are various ways to store DataFrames in JSON, but the format
that will play most nicely with any dataviz work is the array of
records. This is the most common form of D3 data and the one I
recommend outputting from Pandas.3 Writing a DataFrame as
records to JSON is then simply a case of specifying the orient field
in the to_json method.

df = pd.read_json('data.json')
... Perform data-cleaning operations
json = df.to_json('data_cleaned.json', orient='records')
Out:
[{"name":"Albert Einstein", "category":"Physics", ...},
{"name":"Marie Curie", "category":"Chemistry", ... } ...]

Override the default save to store the JSON as dataviz-friendly
records.

We also have the parameters date_format(epoch timestamp, iso for
ISO8601, etc.), double_precision, and default_handler to call if
the object cannot be converted into JSON using Pandas’ parser.
Check the Pandas documentation for more details.

CSV
As befits Pandas’ data-table ethos, its handling of CSV files is
sophisticated enough to cope with pretty much all conceivable data.

212 | Chapter 8: Introduction to Pandas

http://jsonlint.com
http://wiki.cfcl.com/Projects/D3/DF_DS
http://pandas.pydata.org/pandas-docs/dev/io.html#writing-json

4 I recommend using this approach if you want to get a feel for the CSV or JSON parsers.
It’s much more convenient than managing local files.

Conventional CSV files, which is the large majority, will load
without parameters.

data.csv:
name,category
"Albert Einstein",Physics
"Marie Curie",Chemistry

df = pd.read_csv('data.csv')
df
Out:
 name category
0 Albert Einstein Physics
1 Marie Curie Chemistry

But there is a lot of CSV type data out there that is not comma-
separated or that uses idiosyncratic quoting for strings containing
spaces or special characters. In this case, we can specify any non-
standard elements in our read request. We’ll use Python’s handy
StringIO module to emulate reading from a file:4

from StringIO import StringIO

data = " `Albert Einstein`| Physics \n`Marie Curie`| Chemistry"

df = pd.read_csv(StringIO(data),
 sep='|',
 names=['name', 'category'],
 skipinitialspace=True, quotechar="`")

df
Out:
 name category
0 Albert Einstein Physics
1 Marie Curie Chemistry

The fields are pipe-separated, not the default comma-separated.

Here we provide the missing column headers.

We have the same degree of flexibility when saving CSV files, here
setting the encoding to Unicode utf-8.

df.to_csv('data.csv', encoding='utf-8')

For full coverage of the CSV options, see here.

Creating and Saving DataFrames | 213

http://pandas.pydata.org/pandas-docs/dev/io.html#csv-text-files

Excel Files
Pandas uses Python’s xlrd module to read Excel 2003 (.xls) and Excel
2007 (.xlsx) files. Excel documents have multiple named sheets, each
of which can be passed to a DataFrame. There are two ways to read a
datasheet into a DataFrame. The first is by creating and then parsing
an ExcelFile object.

dfs = {}
xls = pd.ExcelFile('nobel_winners.xls') # load Excel file
dfs['WSheet1'] = xls.parse('WinnersSheet1', na_values=['NA'])
dfs['WSheet2'] = xls.parse('WinnersSheet2',
 index_col=1,
 na_values=['-'],
 skiprows=3
)

Grab a sheet by name and save to a dictionary.

Specify the column, by position, to use as DataFrame’s row
labels.

A list of additional strings to recognize as NaN.

The number of rows (e.g., metadata) to skip before processing.

Alternatively you can use the read_excel method, which is a conve‐
nience method for loading multiple spreadsheets.

data = read_excel('nobel_winners.xls', ['WSheet1','WSheet2'],
 index_col=None, na_values=['NA'])

The only reason not to use read_excel is if you need different argu‐
ments for reading each Excel sheet.

You can specify sheets by index or name using the second (sheet
name) parameter. sheetname can be a single name-string or index
(beginning at 0) or a mixed list. By default sheetname is 0, returning
the first sheet. Example 8-1 shows some variations. Setting sheet
name to None returns a sheetname-keyed dictionary of DataFrames.

Example 8-1. Loading Excel sheets

return the first datasheet
df = pd.read_excel('nobel_winners.xls')

214 | Chapter 8: Introduction to Pandas

return a named sheet
df = pd.read_excel('nobel_winners.xls', 'WSheet3')

first sheet and sheet named 'WSheet3'
df = pd.read_excel('nobel_winners.xls', [0, 'WSheet3'])

all sheets loaded into a name-keyed dictionary
dfs = pd.read_excel('nobel_winners.xls', sheetname=None)

The parse_cols parameter lets you select the sheet columns to be
parsed. Setting parse_cols to an integer value selects all columns up
to that ordinal. Setting parse_cols to a list of integers allows you to
select specific columns.

parse up to the fifth column
pd.read_excel('nobel_winners.xls', 'WSheet1', parse_cols=4)

parse the second and fourth columns
pd.read_excel('nobel_winners.xls', 'WSheet1', parse_cols=[1, 3])

For more information on read_excel, see here.

You can save a DataFrame to the sheet of an Excel file with the
to_excel method, giving the Excel filename and a sheetname,
'nobel_winners' and 'WSheet1', respectively, in this example:

df.to_excel('nobel_winners.xlsx', sheet_name='WSheet1')

There are various options similar to to_csv and covered here.
Because Pandas Panels and Excel files can store multiple Data
Frames, there is a Panel to_excel method to write all its DataFrames
to an Excel file.

If you need to select multiple DataFrames to write to a shared Excel
file, you can use an ExcelWriter object.

with pd.ExcelWriter('nobel_winners.xlsx') as writer:
 df1.to_excel(writer, sheet_name='WSheet1')
 df2.to_excel(writer, sheet_name='WSheet2')

SQL
If available, and I’d highly recommend that it is, Pandas uses
Python’s SQLAlchemy module to do the database abstraction; other‐
wise, there is an sqlite fallback using Python’s standard database
library. If using SQLAlchemy, you’ll also need the driver library for
your database.

Creating and Saving DataFrames | 215

http://bit.ly/1tAISErl
http://bit.ly/1W3YPxO

The easiest way to load a database table or the results of an SQL
query is with the read_sql method.

import sqlalchemy

engine = sqlalchemy.create_engine(
 'mysql://USER:PASSWORD@localhost/db')
df = pd.read_sql('nobel_winners', engine)

Here, we use a MySQL database. SQLAlchemy can create
engines for all the commonly used databases.

Read the contents of the 'nobel_winners' SQL table into a
DataFrame.

read_sql is a convenience wrapper around the read_sql_table and
read_sql_query methods and will do the right thing depending on
its first argument.

Writing DataFrames to an SQL database is simple enough. Using the
engine we just created:

save DataFrame df to nobel_winners SQL table
df.to_sql('nobel_winners', engine)

If you encounter errors due to packet-size limitations, the chunk
size parameter can set the number of rows to be written at a time.

write 500 rows at a time
df.to_sql('nobel_winners', engine, chunksize=500)

Pandas will do the sensible thing and try to map your data to a suit‐
able SQL type, inferring the datatype of objects. If necessary, the
default type can be overridden in the load call:

from sqlalchemy.types import String
df.to_sql('nobel_winners', engine, dtype={'year': String})

Override Pandas’ inference, and specify year as a String
column.

Further details of Pandas-SQL interaction can be found in the Pan‐
das documentation.

MongoDB
For dataviz work, there’s a lot to be said for the convenience of
document-based NoSQL databases like MongoDB. In MongoDB’s

216 | Chapter 8: Introduction to Pandas

http://pandas.pydata.org/pandas-docs/dev/io.html#sql-queries
http://pandas.pydata.org/pandas-docs/dev/io.html#sql-queries

case, things are even better, as it uses a binary form of JSON for its
datastore—namely BSON, short for binary JSON. Since JSON is our
data glue of choice, as it connects our web dataviz with its backend
server, there’s a good reason to consider storing your datasets in
Mongo. It also plays nicely with Pandas.

As we’ve seen, Pandas DataFrames convert nicely to and from JSON
format, so getting a Mongo document collection into a Pandas Data
Frame is a pretty easy affair:

import pandas as pd
from pymongo import MongoClient

client = MongoClient()

db = client.nobel_prize
cursor = db.winners.find()
df = pd.DataFrame(list(cursor))

Create a Mongo client, using the default host and ports.

Get the nobel_prize database.

Find all documents in the winner collection.

Load all documents from the cursor into a list and use to create
a DataFrame.

It’s just as easy to insert a DataFrame’s records into a MongoDB data‐
base. Here, we use the get_mongo_database method we defined in
Example 3-5 to get our nobel_prize database and save the Data
Frame to its winners collection:

db = get_mongo_database('nobel_prize')

records = df.to_dict('records')
db[collection].insert(records)

Converts the DataFrame to a dict, using the records argument
to convert the rows into individual objects.

For PyMongo version 3 and later, use the faster insert_many
method.

Creating and Saving DataFrames | 217

Let’s write a couple of convenience functions to read and write a
DataFrame to a MongoDB database; we’ll use these in the next data
cleaning chapter:

def mongo_to_dataframe(db_name, collection, query={},\
 host='localhost', port=27017,\
 username=none, password=none,\
 no_id=true):
 """ create a dataframe from mongodb collection """

 db = get_mongo_database(db_name, host, port, username,\
 password)

 cursor = db[collection].find(query)

 df = pd.DataFrame(list(cursor))

 if no_id:
 del df['_id']

 return df

def dataframe_to_mongo(df, db_name, collection,\
 host='localhost', port=27017,\
 username=none, password=none):
 """ save a dataframe to mongodb collection """
 db = get_mongo_database(db_name, host, port, username,\
 password)

 records = df.to_dict('records')
 db[collection].insert(records)

Mongo’s _id field will be included in the DataFrame. By default,
remove the column.

Another way to create DataFrames is to build them from a collection
of Series. Let’s have a look at that, taking the opportunity to explore
Series in more detail.

Series into DataFrames
The key idea with Pandas Series is the index. These indices func‐
tion as labels for the heterogeneous data contained in, say, a row of
data. When Pandas operates on more than one data object, these
indices are used to align the fields.

Series can be created in one of three ways. The first is from a
Python list or NumPy array:

218 | Chapter 8: Introduction to Pandas

s = pd.Series([1, 2, 3, 4]) # Series(np.arange(4))
Out:
0 1 # index, value
1 2
2 3
3 4
dtype: int64

Note that integer indices are automatically created for our Series. If
we were adding a row of data to a DataFrame (table), we would want
to specify the column indices by passing them as a list of integers or
labels.

s = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
s
Out:
a 1
b 2
c 3
d 4
dtype: int64

Note that the length of the index array should match the length of
the data array.

We can specify both data and index using a Python dict:

s = pd.Series({'a':1, 'b':2, 'c':3})
Out:
a 1
b 2
c 3
dtype: int64

If we pass an index array along with the dict, Pandas will do the
sensible thing, matching the indices to the data array. Any
unmatched indices will be set to NaN (not a number), and any
unmatched data discarded.

s = pd.Series({'a':1, 'b':2}, index=['a', 'b', 'c'])
Out:
a 1
b 2
c NaN

s = pd.Series({'a':1, 'b':2, 'c':3}, index=['a', 'b'])
Out:
a 1
b 2

Series into DataFrames | 219

Finally, we can pass a single, scalar value as data to the Series, pro‐
vided we also specify an index. The scalar value is then applied to all
indices.

pd.Series(9, {'a', 'b', 'c'})
Out:
a 9
b 9
c 9

Series are like NumPy arrays (ndarray), which means they can be
passed to most NumPy functions:

s = pd.Series([1, 2, 3, 4], ['a', 'b', 'c', 'd'])
np.sqrt(s)
Out:
a 1.000000
b 1.414214
c 1.732051
d 2.000000
dtype: float64

Slicing operations work as they would with Python lists or ndarrays,
but note that the index labels are preserved:

s[1:3]
Out:
b 2
c 3

And of course, unlike ndarrays, multiple datatypes are handled sen‐
sibly:

pd.Series([1, 2.1, 'foo']) + pd.Series([2, 3, 'bar'])
Out:
0 3 # 1 + 2
1 5.1 # 2.1 + 3
2 foobar # strings correctly concatenated
dtype: object

The ability to create and manipulate individual Series is particu‐
larly important when you are interacting with the NumPy ecosys‐
tem, manipulating data from a DataFrame, or creating visualizations
outside of Pandas’ Matplotlib wrapper.

As Series are the building block of DataFrames, it’s easy to join
them together to create a DataFrame, using Pandas’ concat method:

names = pd.Series(['Albert Einstein', 'Marie Curie'],\
 name='name')
categories = pd.Series(['Physics', 'Chemistry'],\

220 | Chapter 8: Introduction to Pandas

 name='category')

df = pd.concat([names, categories], axis=1)

df.head()
Out:
 name category
0 Albert Einstein Physics
1 Marie Curie Chemistry
2 William Faulkner Literature

Create our DataFrame columns, using the name argument, to
provide a header label.

Concatenate the two Series using the axis argument of 1 to
indicate that the Series are columns.

Along with the many ways to create DataFrames from files and data‐
bases just discussed, you should now have a solid grounding in get‐
ting data into and out of DataFrames.

Panels
Pandas provides a Panel class, which is essentially a container for
multiple DataFrames. In the same way that DataFrames function as
dictionaries of Series, the Panel functions as a dictionary of Data
Frames.

The Panel adds another dimension to the DataFrame, making it a
three-dimensional container. So in addition to the index and col‐
umns of a DataFrame, it has an extra axis used to specify one of its
DataFrames.

We can create a Panel by providing it with a dictionary of Data
Frames:

In [0]: df1 = pd.DataFrame({'foo': [1, 2, 3],
'bar':['a', 'b', 'c']})

In [1]: df2 = pd.DataFrame({'baz': [7, 8, 9, 11],
'qux':['p', 'q', 'r', 't']})

In [2]: pn = pd.Panel({'item1':df1, 'item2':df2})
In [3]: pn
Out[3]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 4 (minor_axis)

Panels | 221

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Panel.html

Items axis: item1 to item2
Major_axis axis: 0 to 3
Minor_axis axis: bar to qux

The Panel’s major and minor axes (rows and columns) have
expanded to accommodate the two DataFrames.

The Panel items are expanded where necessary to accommodate
missing rows or columns, with NaN added as padding. You can select
them by name using square brackets:

pn['item1']
Out[66]:
 bar baz foo qux
0 a NaN 1 NaN
1 b NaN 2 NaN
2 c NaN 3 NaN
3 NaN NaN NaN NaN

I think it’s fair to say Panels are a less used aspect of Pandas, but you
may well run into them when dealing with Excel, where the multiple
sheets in a workbook map nicely to multiple DataFrames in a Panel.

Summary
This chapter laid a foundation for the two Pandas-based chapters to
come. The core concepts of Pandas—the DataFrame, Index, and Ser
ies—were discussed and we saw why Pandas is such a good fit with
the type of real-world data that data visualizers deal with, extending
the NumPy ndarray by allowing the storage of heterogeneous data
and adding a powerful indexing system.

With Pandas’ core data structures under our belts, the next few
chapters will show you how to use them to clean and process your
dataset of Nobel Prize winners, extending your knowledge of the
Pandas toolkit and showing you how to go about applying it in a
data visualization context.

Now that we know how to get data into and out of a DataFrame, it’s
time to see what Pandas can do with it. We’ll first see how to give
your data a clean bill of health, discovering and fixing anomalies
such as duplicate rows, missing fields, and corrupted data.

222 | Chapter 8: Introduction to Pandas

CHAPTER 9

Cleaning Data with Pandas

The previous two chapters introduced Pandas and NumPy, the
Numeric Python library it extends. Armed with basic Pandas know-
how, we’re ready to start the cleaning stage of our toolchain, aiming
to find and eliminate the dirty data in our scraped dataset (see
Chapter 6). This chapter will also extend your Pandas knowledge,
introducing new methods in a working context.

In Chapter 8, we covered the core components of Pandas: the Data
Frame, a programmatic spreadsheet capable of dealing with the
many different datatypes found in the real world, and its building
block, the Series, a heterogeneous extension of NumPy’s homoge‐
neous ndarray. We also covered how to read from and write to dif‐
ferent datastores, including JSON, CSV files, MongoDB, and SQL
databases. Now we’ll start to put Pandas through its paces showing
how it can be used to clean dirty data. I’ll introduce the key elements
of data cleaning using our dirty Nobel Prize dataset as an example.

I’ll take it slowly, introducing key Pandas concepts in a working
environment. Let’s first establish why cleaning data is such an
important part of a data visualizer’s work.

Coming Clean About Dirty Data
I think it’s fair to say that most people entering the field of data visu‐
alization underestimate, often by a fairly large factor, the amount of
time they’re going to spend trying to make their data presentable.
The fact is that getting clean datasets that are a pleasure to transform

223

1 Large is a very relative term, but Pandas will take pretty much whatever will fit in your
computer’s RAM memory, which is where DataFrames live.

into cool visualizations could well take over half your time. Data in
the wild is very rarely pristine, often bearing the sticky paw prints of
mistaken manual data entry, missing whole fields due to oversight
or parsing errors and/or mixed datetime formats.

For this book, and to pose a properly meaty challenge, our Nobel
Prize dataset has been scraped from Wikipedia, a manually edited
website with fairly informal guidelines. In this sense, the data is
bound to be dirty—humans make mistakes even when the environ‐
ment is a good deal more forgiving. But even data from the official
APIs of—for example, large social media sites—is often flawed, with
missing or incomplete fields, scar tissue from countless changes to
the data schemas, deliberate misentry, and the like.

So cleaning data is a fundamental part of the job of a data visualizer,
stealing time from all the cool stuff you’d rather be doing—which is
an excellent reason to get really good at it and free up that drudge
time for more meaningful pursuits. And a large part of getting good
at cleaning data is choosing the right toolset, which is where Pandas
comes in. It’s a great way to slice and dice even fairly large datasets,1

and being comfortable with it could save you a lot of time. That is
where this chapter comes in.

To recap, scraping the Nobel data from Wikipedia using Python’s
Scrapy library (see Chapter 6) produced an array of JSON objects of
the form:

{
 "category": "Physics",
 "name": "Albert Einstein",
 "gender": "male",
 "place_of_birth": "Ulm , Baden-W\u00fcrttemberg ,
 German Empire",
 "date_of_death": "1955-04-18",
 ...
}

The job of this chapter is to turn that array into as clean a data
source as possible before we explore it with Pandas in the next
chapter.

224 | Chapter 9: Cleaning Data with Pandas

There are many forms of dirty data, most commonly:

• Duplicate entries/rows
• Missing fields
• Misaligned rows
• Corrupted fields
• Mixed datatypes in a column

We’ll now probe our Nobel Prize data for these kinds of anomalies.

First we need to load our JSON data into a DataFrame, as shown in
the previous chapter (see “Creating and Saving DataFrames” on
page 210). We can open the JSON data file directly:

import pandas as pd

df = pd.read_json(open('data/nobel_winners_full.json'))

But, by preference, using our MongoDB database is cleaner and cuts
down on the file management. Let’s use the utility function we
defined in “MongoDB” on page 216 to load our freshly scraped col‐
lection of Nobel Prize winners into a DataFrame:

df = mongo_to_dataframe('nobel_prize', 'winners')

Create a DataFrame with the entire collection of winners from
our nobel_prize database.

Now that we’ve got our dirty scraped data into a DataFrame, let’s get
a broad overview of what we have.

Inspecting the Data
The Pandas DataFrame has a number of methods and properties that
give a quick overview of the data contained within. The most gen‐
eral is info, which gives a neat summary of the number of data
entries by column:

df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1052 entries, 0 to 1051
Data columns (total 12 columns):
born_in 1052 non-null object
category 1052 non-null object
date_of_birth 1044 non-null object
date_of_death 1044 non-null object

Inspecting the Data | 225

gender 1040 non-null object # missing fields
link 1052 non-null object
name 1052 non-null object
country 1052 non-null object
place_of_birth 1044 non-null object
place_of_death 1044 non-null object
text 1052 non-null object
year 1052 non-null int64
dtypes: int64(1), object(11)
memory usage: 106.8 KB

You can see that some fields are missing entries. For example,
although there are 1,052 rows in our DataFrame, there are only 1,040
gender attributes. Note also the handy memory_usage—Pandas Data
Frames are held in RAM so as datasets increase in size, this number
gives a nice indication of how close we are to our machine-specific
memory limits.

DataFrame’s describe method gives a handy statistical summary of
relevant columns.

df.describe()
Out:
 year
count 1052.000000
mean 1968.729087
std 33.155829
min 1809.000000
25% 1947.000000
50% 1975.000000
75% 1996.000000
max 2014.000000

As you can see, by default only numerical columns are described.
Already we can see an error in the data, the minimum year being
1809, which is impossible when the first Nobel was awarded in 1901.

describe takes an include parameter that allows us to specify the
column datatypes (dtypes) to be assessed. Other than year, the col‐
umns in our Nobel Prize dataset are all objects, which are Pandas’
default, catch-all dtype, capable of representing any numbers,
strings, data times, and more. Example 9-1 shows how to get their
stats.

226 | Chapter 9: Cleaning Data with Pandas

Example 9-1. Describing the DataFrame

In [140]: df.describe(include=['object'])
Out[140]:
 born_in category date_of_birth date_of_death gender \
count 1052 1052 1044 1044 1040
unique 40 7 853 563 2
top Physio.. 9 May 1947 male
freq 910 250 4 362 983

 link name \
count 1052 1052
unique 893 998
top http://eg/wiki/... Daniel Kahneman
freq 4 2

 country place_of_birth place_of_death \
count 1052 1044 1044
unique 59 735 410
top United States
freq 350 29 409
...

The include argument is a list (or single item) of columnar
dtypes to summarize.

There’s quite a lot of useful information to be gleaned from the out‐
put of Example 9-1, such as that there are 59 unique nationalities
with the United States, at 350, being the largest group.

One interesting tidbit is that of 1,044 recorded dates of birth, only
853 are unique, which could mean any number of things. Possibly
some auspicious days saw the birth of more than one laureate or,
wearing our data-cleaning hats, it’s more likely that there are some
duplicated winners or that some dates are wrong or have only recor‐
ded the year. The duplicated winners hypothesis is confirmed by the
observation that of 1,052 name counts, only 998 are unique. Now
there have been a few multiple winners but not enough to account
for 54 duplicates.

DataFrame’s head and tail methods provide another easy way to get
a quick feel for the data. By default, they display the top or bottom
five rows, but we can set that number by passing an integer as the
first argument. Example 9-2 shows the result of using head with our
Nobel DataFrame.

Inspecting the Data | 227

Example 9-2. Sampling the first five DataFrame rows

df.head()
Out:
 born_in category date_of_bi..
0 Physiology or Medicine 8 October 1..
1 Bosnia and Herzegovina Literature 9 October 1..
2 Bosnia and Herzegovina Chemistry July 23, 1..
3 Peace ..
4 Peace 26 July 1..

 date_of_death gender ..
0 24 March 2002 male http://en.wikipedia.org/wiki/C%C3%A..
1 13 March 1975 male http://en.wikipedia.org/wi..
2 1998-01-07 male http://en.wikipedia.org/wiki/Vl..
3 NaN None http://en.wikipedia.org/wiki/Institu..
4 6 October 1912 male http://en.wikipedia.org/wiki/Auguste..

 name country \
0 César Milstein Argentina
1 Ivo Andric *
2 Vladimir Prelog *
3 Institut de Droit International Belgium
4 Auguste Beernaert Belgium

These rows have an entry for the born_in field and an asterisk
by their name.

The date_of_death field has a different time format than the
other rows.

The first five winners in Example 9-2 show a couple of useful things.
First we see the names in rows 1 and 2 are marked by an asterisk
and have an entry in the born_in field . Second, note that row 2
has a different time format for date_of_death than the others, and
that there are both month-day and day-month time formats in the
date_of_birth field . This kind of inconsistency is a perennial
problem for human-edited data, particularly dates and times. We’ll
see how to fix it with Pandas later.

Example 9-1 gives an object count of 1,052 for the born_in field,
indicating no empty fields, but head shows only rows 1 and 2 have
content. This suggests that the missing fields are an empty string or
space, both of which count as data to Pandas. Let’s change them to a
noncounted NaN, which will make more sense of the numbers. But
first we’re going to need a little primer in Pandas data selection.

228 | Chapter 9: Cleaning Data with Pandas

2 Pandas supports multiple indices using the MultiIndex object. This provides a very
powerful way of refining higher-dimensional data. Check out the details in the Pandas
documentation.

Indices and Pandas Data Selection
Before beginning to clean our data, let’s do a quick recap of basic
Pandas data selection, using the Nobel Prize dataset as an example.

Pandas indexes by rows and columns. Usually column indices are
specified by the data file, SQL table, and so on, but, as shown in the
last chapter, we can set or override these when the DataFrame is cre‐
ated by using the names argument to pass a list of column names.
The columns index is accessible as a DataFrame property:

Our Nobel dataset's columns
df.columns
Out: Index([u'born_in', u'category', u'date_of_birth',
...
 u'place_of_death', u'text', u'year'], dtype='object')

By default, Pandas specifies a zero-base integer index for the rows,
but we can override this by passing a list in the index parameter on
creation of the DataFrame or afterward by setting the index prop‐
erty directly. More often we want to use one or more2 of the Data
Frame’s columns as an index. We can do this using the set_index
method. If you want to return to the default index, you can use the
reset_index method, as shown in Example 9-3.

Example 9-3. Setting the DataFrame’s index

set the name field as index
df = df.set_index('name')
df.head(2)
Out:
 born_in category \
name
César Milstein Physiology or Medicine
Ivo Andric * Bosnia and Herzegovina Literature
...

df.reset_index(inplace=True)

df.head(2)
Out:
 name born_in category \

Indices and Pandas Data Selection | 229

http://pandas.pydata.org/pandas-docs/stable/advanced.html#advanced
http://pandas.pydata.org/pandas-docs/stable/advanced.html#advanced

0 César Milstein Physiology or Medicine
1 Ivo Andric * Bosnia and Herzegovina Literature

Sets the frame’s index to its name column. Set the result back to
df.

The rows are now indexed by name.

Resets the index to its integer. Note that we change it in place
this time.

The index is now by integer position.

There are two ways to change a Pandas Data
Frame or Series: by altering the data in place or
by assigning a copy. There is no guarantee that
in place is faster, plus method-chaining requires
that the operation return a changed object. Gen‐
erally, I use the df = df.foo(…) form, but most
mutating methods have an inplace argument
df.foo(…, inplace=True).

Now that we understand the row-columnar indexing system, let’s
start selecting slices of the DataFrame.

We can select a column of the DataFrame by dot notation (where no
spaces or special characters are in the name) or square-bracket nota‐
tion. Let’s take a look at that born_in column:

bi_col = df.born_in # or bi = df['born_in']
bi_col
Out:
0
1 Bosnia and Herzegovina
2 Bosnia and Herzegovina
3
...
1051
Name: born_in, Length: 1052, dtype: object

type(bi_col)
Out: pandas.core.series.Series

Note that the column selection returns a Pandas Series, with the
DataFrame indexing preserved.

230 | Chapter 9: Cleaning Data with Pandas

DataFrames and Series share the same methods for accessing rows/
members. iloc selects by integer position, loc selects by label, and
ix selects by label with an positional integer fallback. One gotcha
with ix happens if we use an alternative integer index. In this case,
only label-based access is supported and explicit use of iloc is
needed to specify position.

access the first row
df.iloc[0] # or df.ix[0]
Out:
name César Milstein
born_in
category Physiology or Medicine
...

set the index to 'name' and access by name-label
df.set_index('name', inplace=True)
df.loc['Albert Einstein'] # or df.ix['Albert Einstein']
Out:
 born_in category date_of_birth date_of_death...
Albert Einstein Physics 1879-03-14 1955-04-18...
...

Selecting Multiple Rows
Standard Python array slicing can be used with a DataFrame to select
multiple rows:

select the first 10 rows
df[0:10]
Out:
 born_in category date_of_b..
0 Physiology or Medicine 8 October ..
1 Bosnia and Herzegovina Literature 9 October ..
...
9 Peace 1910-0..
select the last four rows
df[-4:]
Out:
 born_in category date_of_birth date_..
1048 Peace November 1, 1878 May..
1049 Physiology or Medicine 1887-04-10 19..
1050 Chemistry 1906-9-6 1..
1051 Peace November 26, 1931 ..

The standard way to select multiple rows based on a conditional
expression (e.g., is the value of the column value greater than x) is
to create a Boolean mask and use it in a selector. Let’s find all the

Indices and Pandas Data Selection | 231

Nobel Prize winners after the year 2000. First we create a mask by
performing a Boolean expression on each of the rows:

mask = df.year > 2000
mask
Out:
0 False
1 False
...
13 True
...
1047 True
1048 False
...
Name: year, Length: 1052, dtype: bool

True for all rows where the year field is greater than 2000.

The resulting Boolean mask shares our DataFrame’s index and can
be used to select all True rows:

mask = df.year > 2000
winners_since_2000 = df[mask]
winners_since_2000.count()
Out:
...
year 202 # number of winners since 2000
dtype: int64

winners_since_2000.head()
Out:
...
 text year
13 François Englert , Physics, 2013 2013
32 Christopher A. Pissarides , Economics, 2010 2010
66 Kofi Annan , Peace, 2001 2001
87 Riccardo Giacconi *, Physics, 2002 2002
88 Mario Capecchi *, Physiology or Medicine, 2007 2007

This will return a DataFrame containing only those rows where
the Boolean mask array is True.

Boolean masking is a very powerful technique capable of selecting
any subset of the data you need. I recommend setting a few targets
to practice constructing the right Boolean expressions. Generally, we
dispense with the intermediate mask creation:

winners_since_2000 = df[df.year > 2000]

232 | Chapter 9: Cleaning Data with Pandas

3 By default, Pandas uses NumPy’s NaN (not a number) float to designate missing values.

Now that we can select individual and multiple rows by slicing or
using a Boolean mask, in the next sections we’ll see how we can
change our DataFrame, purging it of dirty data as we go.

Cleaning the Data
Now that we know how to access our data, let’s see how we can
change it for the better, starting with what looks like empty born_in
fields we saw in Example 9-2. If we look at the count of the born_in
columns, it doesn’t show any missing rows, which it would were any
fields missing or NaN (not a number):

In [0]: df.born_in.describe()
Out[0]:
count 1052
unique 40
top
freq 910
Name: born_in, dtype: object

Finding Mixed Types
Note that Pandas stores all string-like data using the dtype object. A
cursory inspection suggests that the column is a mixture of empty
and country-name strings. We can quickly check that all the column
members are Unicode by mapping the Python type function to all
members using the apply method and then making a set of the
resulting list of column members by type:

In [1]: set(df.born_in.apply(type))
Out[1]: {unicode}

This shows that all of the born_in column members are of type uni
code. Now let’s replace any empty strings with an empty field.

Replacing Strings
We want to replace these empty strings with a NaN, to prevent them
being counted.3 The Pandas replace method is tailor-made for this
and can be applied to the whole DataFrame or individual Series:

import numpy as np

Cleaning the Data | 233

https://docs.python.org/2/library/functions.html#type

bi_col.replace('', np.nan, inplace=True)
bi_col
Out:
0 NaN
1 Bosnia and Herzegovina
2 Bosnia and Herzegovina
3 NaN
...

bi_col.count()
Out: 142

Our empty '' strings have been replaced with NumPy’s NaN.

Unlike the empty strings, the NaN fields are discounted.

After replacing the empty strings with NaNs, we get a true count of
142 for the born_in field.

Let’s replace all empty strings in our DataFrame with discounted
NaNs:

df.replace('', np.nan, inplace=True)

Pandas allows sophisticated replacement of strings (and other
objects) in columns (e.g., allowing you to craft regex expressions,
which are applied to whole Series, typically DataFrame columns).
Let’s look at a little example, using the asterisk-marked names in our
Nobel Prize DataFrame.

Example 9-2 showed that some of our Nobel Prize names are
marked with an asterisk, denoting that these winners are recorded
by country of birth, not country at the time of winning the prize:

df.head()
Out:
...
 name country \
0 César Milstein Argentina
1 Ivo Andric *
2 Vladimir Prelog *
3 Institut de Droit International Belgium
4 Auguste Beernaert Belgium

Let’s set ourselves the task of cleaning up those names by removing
the asterisks and stripping any remaining whitespace.

234 | Chapter 9: Cleaning Data with Pandas

https://en.wikipedia.org/wiki/Regular_expression

Pandas Series have a handy str member, which provides a number
of useful string methods to be performed on the array. Let’s use it to
check how many asterisked names we have:

df[df.name.str.contains('*')]['name']
Out:
1 Ivo Andric *
2 Vladimir Prelog *
...
1041 John Warcup Cornforth *
1046 Elizabeth H. Blackburn *
Name: name, Length: 142, dtype: object

We use str’s contains method on the name column. Note that
we have to escape the asterisk ('*') as this is a regex string.
The Boolean mask is then applied to our Nobel Prize DataFrame
and the resulting names listed.

142 of our 1,052 rows have a name containing *.

To clean up the names, let’s replace the asterisks with an empty
string and strip any whitespace from the resulting names:

df.name = df.name.str.replace('*', '')
strip the whitespace from the names
df.name = df.name.str.strip()

Removes all asterisks in the name fields and return the result to
the DataFrame.

A quick check shows that the names are now clean:

df[df.name.str.contains('*')]
Out:
Empty DataFrame

Pandas Series have an impressive number of string-handling func‐
tions, enabling you to search and adapt your string columns. You
can find a full list of these in the API docs.

Removing Rows
To recap, the 142 winners with born_in fields are duplicates, having
an entry in the Wikipedia by both the country they were born in and
their country when given the prize. Although the former could form

Cleaning the Data | 235

http://pandas.pydata.org/pandas-docs/stable/api.html#string-handling

4 One interesting visualization might be charting the migration of Nobel Prize winners
from their homeland.

5 See IEEE 754 and http://en.wikipedia.org/wiki/NaN.

6 As you’ll see in the next chapter, the born_in fields contain some interesting informa‐
tion about the movements of Nobel Prize winners. We’ll keep a copy of them for that
purpose.

the basis of an interesting visualization,4 for our visualization we
want each individual prize represented once only and so need to
remove these from our DataFrame.

We want to create a new DataFrame using only those rows with a
NaN born_in field. You might naively assume that a conditional
expression comparing the born_in field to NaN would work here, but
by definition5 NaN boolean comparisons always return False:

np.nan == np.nan
Out: False

As a result, Pandas provides the dedicated isnull method to check
for discounted (null) fields:

df = df[df.born_in.isnull()]
df.count()
Out:
born_in 0 # all entries now empty
category 910
...
dtype: int64

isnull produces a Boolean mask with True for all rows with an
empty born_in field.

The born_in column is no longer of use, so let’s remove it:6

df = df.drop('born_in', axis=1)

drop takes a single label or index (or list of same) as a first argu‐
ment and an axis argument to indicate row (0 and default) or
column (1) index.

Finding Duplicates
Now, a quick Internet search shows that 889 people and organiza‐
tions have received the Nobel Prize up to 2014. With 910 remaining
rows, we still have a few duplicates or anomalies to account for.

236 | Chapter 9: Cleaning Data with Pandas

http://en.wikipedia.org/wiki/NaN

Pandas has a handy duplicated method for finding matching rows.
This matches by column name or list of column names. Let’s get the
list of all duplicates by name:

dupes_by_name = df[df.duplicated('name')]
dupes_by_name.count()
Out:
...
year 46
dtype: int64

duplicated returns a Boolean array with True for the first
occurrence of any rows with the same name field.

Now, a few people have won the Nobel Prize more than once but not
46, which means 40-odd winners are duplicated. Given that the
Wikipedia page we scraped listed prize winners by country, the best
bet is winners being “claimed” by more than one country.

Let’s look at some of the ways we can find duplicates by name in our
Nobel Prize DataFrame. Some of these are pretty inefficient, but it’s a
nice way to demonstrate a few Pandas functions.

By default, duplicated indicates all duplicates after the first occur‐
rence, but it has a take_last option to prioritize the last occurrence.
By combining these two using a Boolean or (|), we can get the full
list of duplicates.

all_dupes = df[df.duplicated('name')\
 | df.duplicated('name', keep='last')]
all_dupes.count()
Out:
...
year 92
dtype: int64

We could also get all the duplicates by testing whether our Data
Frame rows have a name in the list of duplicate names. Pandas has a
handy isin method for this.

all_dupes = df[df.name.isin(dupes_by_name.name)]
all_dupes.count()
Out:
...
year 92
dtype: int64

Cleaning the Data | 237

dupes_by_name.name is a column Series containing all the
duplicated names.

We can also find all duplicates by using Pandas’ powerful groupby
method, which groups our DataFrame’s rows by column or list of
columns. It returns a list of key-value pairs with the column value(s)
as key and list of rows as values:

for name, rows in df.groupby('name'):
 print('name: %s, number of rows: %d'%(name, len(rows)))

name: A. Michael Spence, number of rows: 1
name: Aage Bohr, number of rows: 1
name: Aaron Ciechanover, number of rows: 1
...

groupby returns an iterator of (group name, group) tuples.

In order to get all duplicate rows, we merely need to check the
length of the list of rows returned by key. Anything greater than one
has name duplicates. Here we use Pandas’ concat method, which
takes a list of row lists and creates a DataFrame with all the duplica‐
ted rows. A Python list constructor is used to filter for groups with
more than one row:

pd.concat([g for _,g in df.groupby('name')\
 if len(g) > 1])['name']

Out:
121 Aaron Klug
131 Aaron Klug
615 Albert Einstein
844 Albert Einstein
...
489 Yoichiro Nambu
773 Yoichiro Nambu
Name: name, Length: 92, dtype: object

Create a Python list by filtering the name row groups for those
with more than one row (i.e., duplicated names).

238 | Chapter 9: Cleaning Data with Pandas

Different paths to the same goal

With a large library like Pandas, there are usu‐
ally a number of ways to achieve the same thing.
With small datasets like our Nobel Prize win‐
ners, any one will do, but for large datasets there
could be significant performance implications.
Just because Pandas will do what you ask doesn’t
mean it’s necessarily efficient. With a lot of com‐
plex data manipulation going on behind the
scenes, it’s a good idea to be prepared to be flexi‐
ble and alert to inefficient approaches.

Sorting Data
Now that we have our all_dupes DataFrame, with all duplicated
rows by name, let’s use it to demonstrate Pandas’ sort method.

Pandas provides a sophisticated sort method for the DataFrame and
Series classes, capable of sorting on multiple column names.

df2 = pd.DataFrame(\
 {'name':['zak', 'alice', 'bob', 'mike', 'bob', 'bob'],\
 'score':[4, 3, 5, 2, 3, 7]})
df2.sort_values(['name', 'score'],\
 ascending=[1,0])

Out:
 name score
1 alice 3
5 bob 7
2 bob 5
4 bob 3
3 mike 2
0 zak 4

Sorts the DataFrame first by name, then by score within those
subgroups. Older Pandas versions use sort, now deprecated.

Sorts the names in alphabetical ascending order; sorts scores
from high to low.

Cleaning the Data | 239

7 While France was Curie’s adopted country, she retained Polish citizenship and named
her first discovered radioactive isotope polonium after her home country.

Let’s sort the DataFrame of all_dupes by name and then look at the
name, country, and year columns:

In [306]: all_dupes.sort_values('name')\
 [['name', 'country', 'year']]
Out[306]:
 name country year
121 Aaron Klug South Africa 1982
131 Aaron Klug United Kingdom 1982
615 Albert Einstein Switzerland 1921
844 Albert Einstein Germany 1921
...
910 Marie Curie France 1903
919 Marie Curie France 1911
706 Marie Skłodowska-Curie Poland 1903
709 Marie Skłodowska-Curie Poland 1911
...
650 Ragnar Granit Sweden 1967
960 Ragnar Granit Finland 1809
...
396 Sidney Altman United States 1990
995 Sidney Altman Canada 1989
...
[92 rows x 3 columns]

This output shows that, as expected, some winners have been attrib‐
uted twice for the same year with different countries. It also reveals a
few other anomalies. Although Marie Curie did win a Nobel Prize
twice, she’s included here with both French and Polish nationalities.7

The fairest thing here is to split the spoils between Poland and
France while settling on the single compound surname. We have
also found our anomalous year of 1809 at row 960. Sidney Altman is
both duplicated and given the wrong year of 1990.

Removing Duplicates
Let’s go about removing the duplicates we just identified and start
compiling a little cleaning function.

240 | Chapter 9: Cleaning Data with Pandas

8 Some users dismiss such warnings as nannying paranoia. See the discussion on Stack
Overflow.

9 They can be turned off with pd.options.mode.chained_assignment = None #
default=warn.

Views Versus Copies
It’s very important when working with Pandas to be clear whether
you are altering a view or copy of your DataFrame, Series, and so
on. The following seems like a natural way to change the country
field of a row (Marie Curie’s) but gives a potentially confusing
warning:

df['country'][709] = 'France'
-c:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a
DataFrame

See the caveats in the documentation:
 http://pandas.pydata.org/pandas-docs/stable/...

Set the country of row 709, Marie Curie, from Poland to
France.

This is all the more confusing when you find that it has worked as
expected:

df['country'][709]
Out: 'France'

It turns out that such chained operations are discouraged by the
Pandas devs because it’s easy to unintentionally alter a copy of the
datatype, not the original (view).8

These warnings9 are there to encourage best practice, which is to
use the ix (or the more specific loc and iloc) method:

df.ix[709, 'country'] = 'France'

Cleaning the Data | 241

http://stackoverflow.com/questions/20625582/how-to-deal-with-this-pandas-warning
http://stackoverflow.com/questions/20625582/how-to-deal-with-this-pandas-warning

Changing rows by numeric index is fine if you
know your dataset is stable and don’t anticipate
running any of your cleaning scripts again. But
if, as in the case of our scraped Nobel Prize data,
you may want to run the same cleaning script on
an updated dataset, it’s much better to use stable
indicators (i.e., grab the row with name Marie
Curie and year 1911, not index 919).

A more robust way of changing the country of a specific row is to
use stable column values to select the row rather than its index. So
to change Marie Curie’s 1911 prize country to France, we can use a
Boolean mask with the loc method to select a row and then set its
country column to France. Note that we need to specify the Unicode
to include the Polish ł.

df.loc[(df.name == u'Marie Sk\u0142odowska-Curie') &\
 (df.year == 1911), 'country'] = 'France'

As well as changing Marie Curie’s country, we want to remove or
drop some rows from our DataFrame, based on column values.
There are two ways we can do this, firstly by using the DataFrame’s
drop method, which takes a list of index labels, or by creating a new
DataFrame with a Boolean mask that filters the rows we want to
drop. If we use drop, we can use the inplace argument to change
the existing DataFrame.

In the following code, we drop our duplicate Sidney Altman row by
creating a DataFrame with the single row we want (remember, index
labels are preserved) and passing that index to the drop method and
changing the DataFrame in place:

df.drop(df[(df.name == 'Sidney Altman') &\
 (df.year == 1990)].index,
 inplace=True)

Another way to remove the row is to use the same Boolean mask
with a logical not (~) to create a new DataFrame with all rows except
the one(s) we’re selecting:

df = df[~((df.name == 'Sidney Altman') & (df.year == 1990))]

Let’s add this change and all current modifications to a clean_data
method:

def clean_data(df):
 df = df.replace('', np.nan)

242 | Chapter 9: Cleaning Data with Pandas

 df = df[df.born_in.isnull()]
 df = df.drop('born_in', axis=1)
 df.drop(df[df.year == 1809].index, inplace=True)
 df = df[~(df.name == 'Marie Curie')]
 df.loc[(df.name == u'Marie Sk\u0142odowska-Curie') &\
 (df.year == 1911), 'country'] = 'France'
 df = df[~((df.name == 'Sidney Altman') &\
 (df.year == 1990))]
 return df

We now have a mix of valid duplicates (those few multiple Nobel
Prize winners) and those with dual country. For the purposes of our
visualization, we want each prize to count only once so have to dis‐
card half the dual-country prizes. The easiest way is to use the dupli
cated method, but because we collected the winners alphabetically
by country, this would favor those nationalities with first letters ear‐
lier in the alphabet. Short of a fair amount of research and debate,
the fairest way seems to pick one out at random and discard it.
There are various ways to do this, but the simplest is to randomize
the order of the rows before using drop_duplicates, a Pandas
method that drops all duplicated rows after the first encountered or,
with the take_last argument set to True, all before the last.

NumPy has a number of very useful methods in its random module,
of which permutation is perfect for randomizing the row index.
This method takes an array (or Pandas index) of values and shuffles
them. We can then use the DataFrame reindex method to apply the
shuffled result. Note that we drop those rows sharing both name and
year, which will preserve the legitimate double winners with differ‐
ent years for their prizes.

df = df.reindex(np.random.permutation(df.index))
df = df.drop_duplicates(['name', 'year'])
df = df.sort_index()
df.count()
Out:
...
year 865
dtype: int64

Create a shuffled version of df’s index and reindex df with it.

Drop all duplicates sharing name and year.

Return the index to sorted-by-integer position.

Cleaning the Data | 243

10 Depending on the dataset, the cleaning phase is unlikely to catch all transgressors.

If our data wrangling has been successful, we should have only valid
duplicates left, those vaunted double-prize winners. Let’s list the
remaining duplicates to check:

In : df[df.duplicated('name') |
 df.duplicated('name', keep='last')]\
 .sort_values(by='name')\
 [['name', 'country', 'year', 'category']]
Out:
 name country year category
548 Frederick Sanger United Kingdom 1958 Chemistry
580 Frederick Sanger United Kingdom 1980 Chemistry
292 John Bardeen United States 1956 Physics
326 John Bardeen United States 1972 Physics
285 Linus C. Pauling United States 1954 Chemistry
309 Linus C. Pauling United States 1962 Peace
706 Marie Skłodowska-Curie Poland 1903 Physics
709 Marie Skłodowska-Curie France 1911 Chemistry

We combine duplicates from the first with the last to get them
all. If using an older version of Pandas, you may need to use the
argument take_last=True.

A quick Internet check shows that we have the correct four double-
prize winners.

Assuming we’ve caught the unwanted duplicates,10 let’s move on to
other “dirty” aspects of the data.

Dealing with Missing Fields
Let’s see where we stand as far as null fields are concerned by count‐
ing our DataFrame:

df.count()
Out:
category 864 # missing field
date_of_birth 857
date_of_death 566
gender 858 # seven missing genders
link 865
name 865
country 865
place_of_birth 831
place_of_death 524
text 865

244 | Chapter 9: Cleaning Data with Pandas

year 865
dtype: int64

We appear to be missing a category field, which suggests a data
entry mistake. If you remember, while scraping our Nobel Prize data
we checked the category against a valid list (see Example 6-3). One
of them appears to have failed this check. Let’s find out which one it
is by grabbing the row where the category field is null and showing
its name and text columns:

df[df.category.isnull()][['name', 'text']]
Out:
 name text
922 Alexis Carrel Alexis Carrel , Medicine, 1912

We saved the original link text for our winners and, as you can see,
Alexis Carrel was listed as winning the Nobel prize for Medicine,
when it should have been Physiology or Medicine. Let’s correct
that now:

...
df.ix[df.name == 'Alexis Carrel', 'category'] =\
 'Physiology or Medicine'

We are also missing gender for seven winners. Let’s list them:

df[df.gender.isnull()]['name']
Out:
3 Institut de Droit International
156 Friends Service Council
574 Amnesty International
650 Ragnar Granit
947 Médecins Sans Frontières
1000 Pugwash Conferences on Science and World Affairs
1033 International Atomic Energy Agency
Name: name, dtype: object

With the exception of Ragnar Granit, all these are genderless (miss‐
ing person data) institutions. The focus of our visualization is on
individual winners, so we’ll remove these while establishing Ragnar
Granit’s gender:

...
def clean_data(df):
...
 df.ix[df.name == 'Ragnar Granit', 'gender'] = 'male'
 df = df[df.gender.notnull()] # remove genderless entries

Let’s see where those changes leave us by performing another count
on our DataFrame:

Cleaning the Data | 245

df.count()
Out:
category 858
date_of_birth 857 # missing field
...
year 858
dtype: int64

Having removed all the institutions, all entries should have at least a
date of birth. Let’s find the missing entry and fix it:

df[df.date_of_birth.isnull()]['name']
Out:
782 Hiroshi Amano
Name: name, dtype: object

Probably because Hiroshi Amano is a very recent (2014) winner, his
date of birth was not available to be scraped. A quick web search
establishes Amano’s date of birth, which we add to the DataFrame by
hand:

...
 df.ix[df.name == 'Hiroshi Amano', 'date_of_birth'] =\
 '11 September 1960'

We now have 858 individual winners. Let’s do a final count to see
where we stand:

df.count()
Out:
category 858
date_of_birth 858
date_of_death 566
gender 858
link 858
name 858
country 858
place_of_birth 831
place_of_death 524
text 858
year 858
dtype: int64

The key fields of category, date_of_birth, gender, country, and
year are all filled and there’s a healthy amount of data in the remain‐
ing stats. All in all, there’s enough clean data to form the basis for a
rich visualization.

Now let’s put on the finishing touches by making our temporal fields
more usable.

246 | Chapter 9: Cleaning Data with Pandas

Dealing with Times and Dates
Currently the date_of_birth and date_of_death fields are repre‐
sented by strings. As we’ve seen, Wikipedia’s informal editing guide‐
lines have led to a number of different time formats. Our original
DataFrame shows an impressive variety of formats in the first 10
entries:

df[['name', 'date_of_birth']]
Out[14]:
 name date_of_birth
0 César Milstein 8 October 1927
...
2 Vladimir Prelog * July 23, 1906
...
9 Georges Pire 1910-02-10
...

In order to compare the date fields (for example, subtracting the
prize year from date of birth to give the winners’ ages), we need to
get them into a format that allows such operations. Unsurprisingly,
Pandas is good with parsing messy dates and times, converting them
by default into the NumPy datetime64 object, which has a slew of
useful methods and operators.

Converting a time column to datetime64, we use Pandas’ to_date
time method:

pd.to_datetime(df.date_of_birth, errors='raise')
Out:
0 1927-10-08
4 1829-07-26
...
1050 1906-09-06
1051 1931-11-26
Name: date_of_birth, Length: 858, dtype: datetime64[ns]

errors' default is ignore, but we want them flagged.

By default to_datetime ignores errors, but here we want to know if
Pandas has been unable to parse a date_of_birth, giving us the
opportunity to fix it manually. Thankfully, the conversion passes
without error.

Running to_datetime on the date_of_birth field raises a ValueEr
ror and an unhelpful one at that, giving no indication of the entry
that triggered it.

Cleaning the Data | 247

In [143]: pd.to_datetime(df.date_of_death, errors='raise')
--
ValueError Traceback (most recent call last)
...
 301 if arg is None:

ValueError: month must be in 1..12

One naive way to find the bad dates would be to iterate through our
rows of data, and catch and display any errors. Pandas has a handy
iterrows method that provides a row iterator. Combined with a
Python try-except block, this successfully finds our problem date
fields.

for i,row in df.iterrows():
 try:
 pd.to_datetime(row.date_of_death, errors='raise')
 except:
 print '%s(%s, %d)'%(row.date_of_death.ljust(30),\
 row['name'], i)

Run to_datetime on the individual row and catch any errors.

We left-justify the date of death in a text column of width 30.

Pandas rows have a masking Name property, so we use string-key
access with [name].

This lists the offending rows:

1968-23-07 (Henry Hallett Dale, 150)
May 30, 2011 (aged 89) (Rosalyn Yalow, 349)
living (David Trimble, 581)
Diederik Korteweg (Johannes Diderik van der Waals, 746)
living (Shirin Ebadi, 809)
living (Rigoberta Menchú, 833)
1 February 1976, age 74 (Werner Karl Heisenberg, 858)

which is a good demonstration of the kind of data errors you get
with collaborative editing.

Although the last method works, whenever you find yourself iterat‐
ing through rows of a Pandas DataFrame, you should pause for a
second and try to find a better way, one that exploits the multirow
array handling that is a fundamental aspect of Pandas’ efficiency.

A better way to find the bad dates exploits the fact that Pandas’
to_datetime method has a coerce argument, which, if True, con‐
verts any date exceptions to NaT (not a time), the temporal equiva‐

248 | Chapter 9: Cleaning Data with Pandas

lent of NaN. We can then create a Boolean mask out of the resulting
DataFrame based on the NaT date rows, producing Figure 9-1.

with_death_dates = df[df.date_of_death.notnull()]
bad_dates = pd.isnull(pd.to_datetime(\
 with_death_dates.date_of_death, errors='coerce'))
with_death_dates[bad_dates][['category', 'date_of_death',\
'name']]

Gets all rows with non-null date fields.

Creates a Boolean mask for all bad dates in with_death_dates
by checking against null (NaT) after coercing failed conversions
to NaT. For older Pandas versions, you may need to use
coerce=True.

Figure 9-1. The unparseable date fields

Depending on how fastidious you want to be, these can be corrected
by hand or coerced to NumPy’s time equivalent of NaN, NaT. We’ve
got more than 500 valid dates of death, which is enough to get some
interesting time stats, so we’ll run to_datetime again and force
errors to null:

df.date_of_death = pd.to_datetime(df.date_of_death,\
errors='coerce')

Now that we have our time fields in a usable format, let’s add a field
for the age of the winner on receiving his/her Nobel Prize. In order
to get the year value of our new dates, we need to tell Pandas that it’s
dealing with a date column, using the DatetimeIndex method.

df['award_age'] = df.year - pd.DatetimeIndex(df.date_of_birth)\
.year

Cleaning the Data | 249

Convert the column to a DatetimeIndex, an ndarray of date
time64 data, and use the year property.

Let’s use our new award_age field to see the youngest recipients of
the Nobel Prize:

use +sort+ for older Pandas
df.sort_values('award_age').iloc[:10]\
 [['name', 'award_age', 'category', 'year']]
Out:
 name award_age category year
725 Malala Yousafzai 17 Peace 2014
525 William Lawrence Bragg 25 Physics 1915
626 Georges J. F. Köhler 30 P...Medicine 1976
247 Carl Anderson 31 Physics 1936
858 Werner Karl Heisenberg 31 Physics 1932
294 Tsung-Dao Lee 31 Physics 1957
146 Paul Dirac 31 Physics 1933
226 Tawakkol Karman 32 Peace 2011
986 Frederick G. Banting 32 P...Medicine 1923
877 Rudolf Mössbauer 32 Physics 1961

For activism for female education, I’d recommend reading more
about Malala’s inspirational story.

Now we have our date fields in a manipulable form, let’s have a look
at the full clean_data function, which summarizes this chapter’s
cleaning efforts.

The Full clean_data Function
For manually edited data like scraped Wikipedia datasets, it’s
unlikely that you’ll catch all the errors on a first pass. So expect to
pick up a few during the data exploration phase. Nevertheless, our
Nobel Prize dataset is looking very usable. We’ll declare it clean
enough and the job of this chapter done. Example 9-4 shows the
steps we used to achieve this cleaning feat.

Example 9-4. The full Nobel Prize dataset cleaning function

def clean_data(df):
 df = df.replace('', np.nan)
 df_born_in = df[df.born_in.notnull()]
 df = df[df.born_in.isnull()]
 df = df.drop('born_in', axis=1)
 df.drop(df[df.year == 1809].index, inplace=True)
 df = df[~(df.name == 'Marie Curie')]

250 | Chapter 9: Cleaning Data with Pandas

http://en.wikipedia.org/wiki/Malala_Yousafzai

 df.loc[(df.name == u'Marie Sk\u0142odowska-Curie') &\
 (df.year == 1911), 'country'] = 'France'
 df = df[~((df.name == 'Sidney Altman') & (df.year == 1990))]
 df = df.reindex(np.random.permutation(df.index))
 df = df.drop_duplicates(['name', 'year'])
 df = df.sort_index()
 df.ix[df.name == 'Alexis Carrel', 'category'] =\
 'Physiology or Medicine'
 df.ix[df.name == 'Ragnar Granit', 'gender'] = 'male'
 df = df[df.gender.notnull()] # remove institutional prizes
 df.ix[df.name == 'Hiroshi Amano', 'date_of_birth'] =\
 '11 September 1960'
 df.date_of_birth = pd.to_datetime(df.date_of_birth)
 df.date_of_death = pd.to_datetime(df.date_of_death,\
 errors='coerce')
 df['award_age'] = df.year - pd.DatetimeIndex(df.date_of_birth)\
 .year
 return df, df_born_in

Makes a DataFrame containing the rows with born_in fields.

Removes duplicates from the DataFrame after randomizing the
row order.

Converts the date columns to the practical datetime64 data‐
type.

Saving the Cleaned Dataset
Now let’s save the results of our cleaning function to our Mongo
database using the utility method we wrote in the last chapter (see
“MongoDB” on page 216).

df_clean, df_born_in = clean_data()

dataframe_to_mongo(df_clean, 'nobel_prize', 'winners')
dataframe_to_mongo(df_born_in, 'nobel_prize', 'winners_born_in')

Save the cleaned DataFrame to the nobel_prize database, col‐
lection name winners_cleaned.

Let’s also save a copy of our df_clean DataFrame to an SQLite
nobel_prize database in a local data directory. We’ll use this to
demonstrate the Flask-Restless SQL web API in “RESTful SQL with
Flask-Restless” on page 353. Three lines of Python and the data
frame’s to_sql method do the job succinctly (see “SQL” on page 215
for more details):

Saving the Cleaned Dataset | 251

import sqlalchemy

engine = sqlalchemy.create_engine(\
'sqlite:///data/nobel_prize.db')
df_clean.to_sql('winners', engine)

Merging DataFrames
At this point, we can also create a merged database of our clean win
ners data and the image and biography dataset we scraped in
“Scraping Text and Images with a Pipeline” on page 183. This will
provide a good opportunity to demonstrate Pandas’ ability to merge
DataFrames. The following code shows how to merge df_clean and
the bio dataset:

Read the Scrapy bio-data into a DataFrame
df_winners_bios = pd.read_json(\
open('data/scrapy_nwinners_minibio.json'))

df_winners_all = pd.merge(df_clean, df_winners_bios,\
how='outer', on='link')

Panda’s merge takes two DataFrames and merges them based on
shared column name(s) (link, in this case). The how argument
specifies how to determine which keys are to be included in the
resulting table and works in the same way as SQL joins. In this
case, outer specifies a FULL_OUTER_JOIN.

Merging the two DataFrames results in redundancies in our merged
dataset, with more than the 858 winning rows:

df_winners_all.count()
Out:
award_age 1023
category 1023
...
bio_image 978
mini_bio 1086

We can easily remove these by using drop_duplicates to remove
any rows that share a link and year field after removing any rows
without a name field:

df_winners_all = df_winners_all[~df_winners_all.name.isnull()]\
.drop_duplicates(subset=['link', 'year'])

252 | Chapter 9: Cleaning Data with Pandas

http://bit.ly/1UT8fd7
http://bit.ly/1UdUSC2

A quick count shows that we now have the right number of winners
with images for 770 and a mini_bio for all but one:

df_winners_all.count()
award_age 858
category 858
...
bio_image 770
mini_bio 857
dtype: int64

While we’re cleaning our dataset, let’s see which winner is missing a
mini_bio field:

df_winners_all[df_winners_all.mini_bio.isnull()]
Out:
...
 link name \
229 http://en.wikipedia.org/wiki/L%C3%AA_%C3... Lê Ðức Thọ
...

It turns out to be a Unicode error in creating the Wikipedia link for
Lê Ðức Thọ, the Vietnamese Peace Prize winner. This can be correc‐
ted by hand.

It only remains to save our merged dataset to MongoDB:

dataframe_to_mongo(df_winners_all, 'nobel_prize', 'winners_all')

With our cleaned data in the database, we’re ready to start exploring
it in the next chapter.

Summary
In this chapter, you learned how to clean a fairly messy dataset, pro‐
ducing data that will be much nicer to explore and generally work
with. Along the way, a number of new Pandas methods and techni‐
ques were introduced to extend the last chapter’s introduction to
basic Pandas.

In the next chapter, we will use our newly minted dataset to start
getting a feel for the Nobel Prize recipients, their country, gender,
age, and any interesting correlations (or lack thereof) we can find.

Summary | 253

CHAPTER 10

Visualizing Data with Matplotlib

As a data visualizer, one of the best ways to come to grips with your
data is to visualize it interactively, using the full range of charts and
plots that have evolved to summarize and refine datasets. Conven‐
tionally, the fruits of this exploratory phase are then presented as
static figures, but increasingly they are used to construct more
engaging interactive web-based charts, such as the cool D3 visuali‐
zations you have probably seen (one of which we’ll be building in
Part V).

Python’s Matplotlib and its family of extensions (such as the statisti‐
cally focused Seaborn) form a mature and very customizable plot‐
ting ecosystem. Matplotlib plots can be used interactively by
IPython (the Qt and Notebook versions), providing a very powerful
and intuitive way of finding interesting nuggets in your data. In this
chapter we’ll introduce Matplotlib and one of its great extensions,
Seaborn.

Pyplot and Object-Oriented Matplotlib
Matplotlib can be more than a little confusing, especially if you start
randomly sampling examples online. The main complicating factor
is that there are two main ways to create plots, which are similar
enough to be confused but different enough to lead to a lot of frus‐
trating errors. The first way uses a global state machine to interact
directly with Matplotlib’s pyplot module. The second, object-
oriented approach uses the more familiar notion of figure and axes
classes to provide a programmatic alternative. I’ll clarify their differ‐

Visualizing Data with Matplotlib | 255

1 If you have errors trying to start a GUI session, try changing the backend setting (e.g.,
if using OS X and %matplotlib qt doesn’t work, try %matplotlib osx).

ences in the sections ahead, but as a rough rule of thumb, if you’re
working interactively with single plots, pyplot’s global state is a con‐
venient shortcut. For all other occasions, it makes sense to explicitly
declare your figures and axes using the object-oriented approach.

Starting an Interactive Session
Within an IPython session, Matplotlib has two modes of operation:
inline and as a standalone window (Qt). IPython’s Qt console sup‐
ports both modes; the Notebook supports inline graphics, whereas
IPython started from the command line only supports a standalone
window.

First start an IPython session from the command line with an
optional notebook or qt flag:

$ ipython [notebook | qt]

If using the Jupyter notebook, use the following command to start a
session:

$ jupyter notebook

You can then use one of the Matplotlib magic commands within the
IPython session to enable interactive Matplotlib. On its own, %mat
plotlib will use the default GUI backend to create a plotting win‐
dow, but you can specify the backend directly. The following should
work on standard and Qt console IPython:1

%matplotlib [qt | osx | wx ...]

To get inline graphics in the Notebook or Qt console, you can use
the inline directive. Note that with inline plots, you can’t amend
them after creation, unlike the standalone Matplotlib window:

%matplotlib inline

Whether you are using Matplotlib interactively or in Python pro‐
grams, you’ll use similar imports:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

256

256 | Chapter 10: Visualizing Data with Matplotlib

http://bit.ly/1S9Kadw
http://bit.ly/1rtACUU
http://jupyter.org
http://bit.ly/1UAH8on

2 IPython has a large number of such functions to enable a whole slew of useful extras to
the vanilla Python interpreter. Check them out on the IPython website.

3 This was inspired by Matlab.

You will find many examples of Matplotlib using
pylab. Pylab is a convenience module that bulk-
imports matplotlib.pyplot (for plotting) and
NumPy in a single namespace. Pylab is pretty
much deprecated now, but even were it not, I’d
still recommend avoiding this namespace and
merging and importing pyplot and numpy

explicitly.

While NumPy and Pandas are not mandatory, Matplotlib is
designed to play well with them, handling NumPy arrays and, by
association, Pandas Series.

The ability to create inline plots is key to enjoyable interaction with
Matplotlib, and we achieve this in IPython with the following
“magic”2 injunction:

In [0]: %matplotlib inline

Your Matplotlib plots will now be inserted into your IPython work‐
flow. This works with Qt and Notebook versions. In the Notebooks,
the plots are incorporated into the active cell.

Amending plots

In inline mode, after an IPython cell or (multi-
line) input has been run, the drawing context is
flushed. This means you cannot change the plot
from a previous cell or input using the gcf (get
current figure) method but have to repeat all the
plot commands with any additions or amend‐
ments in a new input/cell.

Interactive Plotting with Pyplot’s Global State
The pyplot module provides a global state that you can manipulate
interactively.3 This is intended for use in interactive data exploration
and is best when you are creating simple plots, usually containing
single figures. pyplot is convenient and many of the examples you’ll

Interactive Plotting with Pyplot’s Global State | 257

https://ipython.org/ipython-doc/dev/interactive/tutorial.html
http://uk.mathworks.com/products/matlab/

see use it, but for more complex plotting Matplotlib’s object-oriented
API (which we’ll see shortly) comes into its own. Before demoing
use of the global plot, let’s create some random data to display, cour‐
tesy of Panda’s useful period_range method:

x = pd.period_range(pd.datetime.now(), periods=200, freq='d')
x = x.to_timestamp().to_pydatetime()
y = np.random.randn(200, 3).cumsum(0)

Creates a Pandas datetime index with 200 day (d) elements,
starting from the current time (datetime.now()).

Converts datetime index to Python datetimes.

Creates three 200-element random arrays summed along the 0
axis.

We now have a y-axis with 200 time slots and three random arrays
for the complementary x values. These are provided as separate
arguments to the (line)plot method:

plt.plot(x, y)

This gives us the not particularly inspiring chart shown in
Figure 10-1. Note how Matplotlib deals naturally with a multidi‐
mensional NumPy line array.

Figure 10-1. Default line plot

258 | Chapter 10: Visualizing Data with Matplotlib

Although Matplotlib’s defaults are, by general consensus, less than
ideal, one of its strengths is the sheer amount of customization you
can perform. This is why there is a rich ecosystem of chart libraries
that wrap Matplotlib with better defaults, more attractive color
schemes, and more. Let’s see some of this customization in action by
using vanilla Matplotlib to tailor our default plot.

Configuring Matplotlib
Matplotlib provides a wide range of configurations, which can be
specified in a matplotlibrc file or dynamically, through the
dictionary-like rcParams variable. Here we change the width and
default color of our plot lines:

import matplotlib as mpl
mpl.rcParams['lines.linewidth'] = 2
mpl.rcParams['lines.color'] = 'r' # red

You can find a sample matplotlibrc file at the main site.

As well as using the rcParams variable, you can use the gcf (get cur‐
rent figure) method to grab the currently active figure and manipu‐
late it directly.

Let’s see a little example of configuration, setting the current figure’s
size.

Setting the Figure’s Size
If your plot’s default readability is poor or the width-to-height ratio
suboptimal, you will want to change its size. By default, Matplotlib
uses inches for its plotting size. This makes sense when you consider
the many backends (often vector-graphic-based) that Matplotlib can
save to. Here we use pyplot to set the figure size to eight by four
inches, using rcParams and gcf:

set figure size to 8 by 4 inches
plt.rcParams['figure.figsize'] = (8,4)
plt.gcf().set_size_inches(8, 4)

Points, Not Pixels
Matplotlib uses points, not pixels, to measure the size of its figures.
This is the accepted measure for print-quality publications, and
Matplotlib is used to deliver publication-quality images.

Interactive Plotting with Pyplot’s Global State | 259

http://bit.ly/1ZWSMKA
http://bit.ly/1UTaxJ1
http://bit.ly/21r1YHF

4 See the docs for more details.

By default a point is approximately 1/72 of an inch wide, but Mat‐
plotlib allows you to adjust this by changing the dots-per-inch (dpi)
for any figures generated. The higher this number, the better the
quality of the image. For the purpose of the inline figures shown
interactively during IPython sessions, the resolution is usually a
product of the backend engine being used to generate the plots (e.g.,
Qt, WXAgg, tkinter). See here for an explanation of backends.

Labels and Legends
Figure 10-1 needs, among other things, to tell us what the lines
mean. Matplotlib has a handy legend box for line labeling, which,
like most things Matplotlib, is heavily configurable. Labeling our
three lines involves a little indirection as the plot method only takes
one label, which it applies to all lines generated. Usefully, the plot
command returns all Line2D objects created. These can be used by
the legend method to set individual labels.

plots = plt.plot(x,y)
plots
Out:
[<matplotlib.lines.Line2D at 0x9b31a90>,
 <matplotlib.lines.Line2D at 0x9b4da90>,
 <matplotlib.lines.Line2D at 0x9b4dcd0>]

The legend method can set labels, suggest a location for the legend
box, and configure a number of other things:

plt.legend(plots, ('foo', 'bar', 'baz'),
 loc='best',
 framealpha=0.5,
 prop={'size':'small', 'family':'monospace'})

Sets the labels for our three plots.

Using the best location should avoid obscuring lines.

Sets the legend’s transparency.

Here we adjust the font properties of the legend.4

260 | Chapter 10: Visualizing Data with Matplotlib

http://bit.ly/1ZWTG9X
http://matplotlib.org/faq/usage_faq.html#what-is-a-backend
http://bit.ly/1ZWTIPb
http://bit.ly/1rtCY69

5 See the Matplotlib website for details.

Titles and Axes Labels
Adding a title and label for your axes is as easy as can be:

plt.title('Random trends')
plt.xlabel('Date')
plt.ylabel('Cum. sum')

You can add some text with the figtext method:5

plt.figtext(0.995, 0.01,
 u'© Acme designs 2015',
 ha='right', va='bottom')

The location of the text proportionate to figure size.

Horizontal (ha) and vertical (va) alignment.

The complete code is shown in Example 10-1 and the resulting chart
in Figure 10-2.

Example 10-1. Customized line chart

plots = plt.plot(x, y)
plt.legend(plots, ('foo', 'bar', 'baz'), loc='best,
 framealpha=0.25,
 prop={'size':'small', 'family':'monospace'})
plt.gcf().set_size_inches(8, 4)
plt.title('Random trends')
plt.xlabel('Date')
plt.ylabel('Cum. sum')
plt.grid(True)
plt.figtext(0.995, 0.01, u'\u00a9 Acme Designs 2015',
ha='right', va='bottom')
plt.tight_layout()

This will add a dotted grid to the figure, marking the axis ticks.

The tight_layout method should guarantee that all your plot
elements are within the figure box. Otherwise, you might find
tick-labels or legends truncated.

Interactive Plotting with Pyplot’s Global State | 261

http://bit.ly/1YyaMMr
http://bit.ly/1Qc75KX

6 As well as providing many formats, it also understands LaTex math mode, which
means you can use mathematical symbols in the titles, legends, and the like. This is one
of the reasons Matplotlib is much beloved by academics, as it is quite capable of
journal-quality images.

7 More details are available on the Matplotlib website.

Figure 10-2. Customized line chart

We used the tight_layout method in Example 10-1 to prevent plot
elements from being obscured or truncated. tight_layout has been
known to cause problems with some systems, particularly OS X. If
you have any problems, this issue thread may help. As of now, the
best advice is to use the set_tight_layout method on the current
figure:

plt.gcf().set_tight_layout(True)

Saving Your Charts
One area where Matplotlib shines is in saving your plots, providing
many output formats.6 The available formats depend on the back‐
ends available, but generally PNG, PDF, PS, EPS, and SVG are
supported.

Saving is as simple as this:

plt.tight_layout() # force plot into figure dimensions
plt.savefig('mpl_3lines_custom.svg')

You can set the format explicitly using format="svg", but Matplotlib
understands the .svg suffix. To avoid truncated labels, use the
tight_layout method.7

262 | Chapter 10: Visualizing Data with Matplotlib

https://www.latex-project.org/
http://matplotlib.org/users/tight_layout_guide.html
https://github.com/matplotlib/matplotlib/issues/1852

Figures and Object-Oriented Matplotlib
As just shown, interactively manipulating Pyplot’s global state works
fine for quick data sketching and single-plot work. However, if you
want to have more control over your charts, Matplotlib’s figure and
axes OOP approach is the way to go. Most of the more advanced
plotting demos you see will be done this way.

In essence, with OOP Matplotlib we are dealing with a figure,
which you can think of as a drawing area with one or more axes (or
plots) embedded in it. Both figures and axes have properties that
can be independently specified. In this sense, the interactive pyplot
route discussed earlier was plotting to a single axis of a global figure.

We can create a figure by using Pyplot’s figure method:

fig = plt.figure(
 figsize=(8, 4), # figure size in inches
 dpi=200, # dots per inch
 tight_layout=True, # fit axes, labels, etc. to canvas
 linewidth=1, edgecolor='r' # 1 pixel wide, red border
)

As you can see, figures share a subset of properties with the global
pyplot module. These can be set on creation of the figure or
through similar methods (i.e., fig.text() as opposed to
plt.fig_text()). Each figure can have multiple axes, each of
which is analogous to the single, global plot state but with the con‐
siderable advantage that multiple axes can exist on one figure, each
with independent properties.

Axes and Subplots
The figure.add_axes method allows precise control over the posi‐
tion of axes within a figure (e.g., enabling you to embed a smaller
plot within the main). Positioning of plot elements uses a 0 → 1
coordinate system, where 1 is the width or height of the figure. You
can specify the position using a four-element list or tuple to set
bottom-left and top-right bounds [bottom(h*0.2), left(w*0.2),
top(h*0.8), right(w*0.8)]:

fig.add_axes([0.2, 0.2, 0.8, 0.8])

Example 10-2 shows the code needed to insert smaller axes into
larger ones, using our random test data. The result is shown in
Figure 10-3.

Figures and Object-Oriented Matplotlib | 263

8 The handy tight_layout option assumes grid-layout subplots.

Example 10-2. A plot insert with figure.axes

fig = plt.figure(figsize=(8,4))
--- Main Axes
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.set_title('Main Axes with Insert Child Axes')
ax.plot(x, y[:,0])
ax.set_xlabel('Date')
ax.set_ylabel('Cum. sum')
--- Inserted Axes
ax = fig.add_axes([0.15, 0.15, 0.3, 0.3])
ax.plot(x, y[:,1], color='g') # 'g' for green
ax.set_xticks([]);

This selects the first column of our random NumPy y-data.

Removes the x ticks and labels from our embedded plot.

Figure 10-3. Inserted plot with figure.add_axes

Although add_axes gives us a lot of scope for fine-tuning the
appearance of our charts, most of the time Matplotlib’s built-in grid-
layout system makes life much easier.8 The simplest option is to use
figure.subplots, which allows you to specify row-column layouts
of equal-sized plots. If you want a grid with different-sized plots, the
gridspec module is your go-to.

Calling subplots without arguments returns a figure with single
axes. This is closest in use to using the Pyplot state machine.

264 | Chapter 10: Visualizing Data with Matplotlib

Example 10-3 shows the figure and axes equivalent to the pyplot
demo in Example 10-1, producing the chart in Figure 10-2. Note the
use of “setter” methods for figure and axes.

Example 10-3. Plotting with single figure and axes

figure, ax = plt.subplots()
plots = ax.plot(x, y, label='')
figure.set_size_inches(8, 4)
ax.legend(plots, ('foo', 'bar', 'baz'), loc='best', framealpha=0.25,
prop={'size':'small', 'family':'monospace'})
ax.set_title('Random trends')
ax.set_xlabel('Date')
ax.set_ylabel('Cum. sum')
ax.grid(True)
figure.text(0.995, 0.01, u'\u00a9 Acme Designs 2015',
ha='right', va='bottom')
figure.tight_layout()

Calling subplots with arguments for number of rows (nrows) and
columns (ncols) (as shown in Example 10-4) allows multiple plots
to be placed on a grid layout (see the results in Figure 10-4). The call
to subplots returns the figure and an array of axes, in row-column
order. In the example, we specify one column so axes is a single
array of three stacked axes. We make use of Python’s handy zip
method to produce three dictionaries with line data. zip takes lists
or tuples of length n and returns n lists, formed by matching the ele‐
ments by order:

letters = ['a', 'b']
numbers = [1, 2]
zip(letters, numbers)
Out:
[('a', 1), ('b', 2)]

In the for loop, we use enumerate to supply an index i, which we
use to select an axis by row, using our zipped labelled_data to pro‐
vide the plot properties.

Note the shared x- and y-axes specified in the subplots call. This
allows easy comparison of the three charts, particularly on the now
normalized y-axis. To avoid redundant x labels, we only call set_xla
bel on the last row, using Python’s handy negative indexing.

Figures and Object-Oriented Matplotlib | 265

https://docs.python.org/2/library/functions.html#zip

Example 10-4. Using subplots

fig, axes = plt.subplots(
 nrows=3, ncols=1,
 sharex=True, sharey=True,
 figsize=(8, 8))
labelled_data = zip(y.transpose(),
 ('foo', 'bar', 'baz'), ('b', 'g', 'r'))
fig.suptitle('Three Random Trends', fontsize=16)
for i, ld in enumerate(labelled_data):
 ax = axes[i]
 ax.plot(x, ld[0], label=ld[1], color=ld[2])
 ax.set_ylabel('Cum. sum')
 ax.legend(loc='upper left', framealpha=0.5,
 prop={'size':'small'})
axes[-1].set_xlabel('Date')

Specifies a subplot grid of three rows by one column.

We want to share x- and y-axes, automatically adjusting limits
for easy comparison.

Switch y to row-column and zip the line data, labels, and line
colors together.

Labels the last of the shared x-axes.

Now that we’ve covered the two ways in which IPython and Mat‐
plotlib engage interactively, using the global state (accessed through
plt) and the object-oriented API, let’s look at a few of the common
plot types you’ll use to explore your datasets.

266 | Chapter 10: Visualizing Data with Matplotlib

Figure 10-4. Three subplots

Plot Types
As well as the line plot just demonstrated, Matplotlib has a number
of plot types available. I’ll now demonstrate a few of the ones com‐
monly used in exploratory data visualization.

Bar Charts
The humble bar chart is a staple for a lot of visual data exploration.
As with most of Matplotlib charts, there’s a good deal of customiza‐
tion possible. We’ll now run through a few variants to give you the
gist.

The code in Example 10-5 produces the bar chart in Figure 10-5.
Note that you have to specify your own bar and label locations. This
kind of flexibility is beloved by hardcore Matplotlibbers and is
pretty easy to get the hang of. Nevertheless, it’s the sort of thing that

Plot Types | 267

can get tedious. It’s trivial to write some helper methods here, and
there are many libraries that wrap Matplotlib and make things a lit‐
tle more user-friendly. As we’ll see in Chapter 11, Panda’s built-in
Matplotlib-based plots are quite a bit simpler to use.

Example 10-5. A simple bar chart

labels = ["Physics", "Chemistry", "Literature", "Peace"]
foo_data = [3, 6, 10, 4]

bar_width = 0.5
xlocations = np.array(range(len(foo_data))) + bar_width
plt.bar(xlocations, foo_data, width=bar_width)
plt.yticks(range(0, 12))
plt.xticks(xlocations+bar_width/2, labels)
plt.xlim(0, xlocations[-1]+bar_width*2)
plt.title("Prizes won by Fooland")
plt.gca().get_xaxis().tick_bottom()
plt.gca().get_yaxis().tick_left()
plt.gcf().set_size_inches((8, 4))

Here we create the left-edge bar locations, starting a bar_width
points.

This places tick labels at the middle of the bars.

We set the x limits to allow for right and left padding of one bar-
width.

Figure 10-5. A simple bar chart

268 | Chapter 10: Visualizing Data with Matplotlib

Bar charts with multiple groups are particularly useful. In
Example 10-6, we add some more country data (for a mythical Bar‐
land) and use the subplots method to produce grouped bar charts
(see Figure 10-6). Once again we specify the bar locations manually,
adding two bar groups—this time with ax.bar. Note that our axes’
x-limits are automatically rescaled in a sensible fashion, at incre‐
ments of 0.5:

ax.get_xlim()
Out: (-0.5, 3.5)

Use the respective setter methods (set_xlim, in this case) if
autoscaling doesn’t achieve the desired look.

Example 10-6. Creating a grouped bar chart

labels = ["Physics", "Chemistry", "Literature", "Peace"]
foo_data = [3, 6, 10, 4]
bar_data = [8, 3, 6, 1]

fig, ax = plt.subplots(figsize=(8, 4))
bar_width = 0.4
xlocs = np.arange(len(foo_data))
ax.bar(xlocs-bar_width, foo_data, bar_width,
 color='#fde0bc', label='Fooland')
ax.bar(xlocs, bar_data, bar_width, color='peru', label='Barland')
#--- ticks, labels, grids, and title
ax.set_yticks(range(12))
ax.set_xticks(ticks=range(len(foo_data)))
ax.set_xticklabels(labels)
ax.yaxis.grid(True)
ax.legend(loc='best')
ax.set_ylabel('Number of prizes')
fig.suptitle('Prizes by country')
fig.tight_layout(pad=2)
fig.savefig('mpl_barchart_multi.png', dpi=200)

With a width of 1 for our two-bar groups, this bar width gives
0.1 bar padding.

Matplotlib supports standard HTML colors, taking hex values
or a name.

We use the pad argument to specify padding around the figure
as a fraction of the font size.

This saves the figure at the high resolution of 200 dots per inch.

Plot Types | 269

Figure 10-6. Grouped bar charts

It’s often useful to use horizontal bars, particularly if there are a lot
of them and/or you are using tick labels, which are likely to run into
one another if placed on the same line. Turning Figure 10-6 on its
side is easy enough, requiring only that we replace the bar method
with its horizontal counterpart barh and switch the axis labels and
limits (see Figure 10-7).

Example 10-7. Converting Example 10-6 to horizontal bars

...
ylocs = np.arange(len(foo_data))
ax.barh(ylocs-width, foo_data, width, color='#fde0bc',
 label='Fooland')
ax.barh(ylocs, bar_data, width, color='peru', label='Barland')
--- labels, grids, and title, then save
ax.set_xticks(range(12))
ax.set_yticks(ticks=range(len(foo_data)))
ax.set_yticklabels(labels)
ax.xaxis.grid(True)
ax.legend(loc='best')
ax.set_xlabel('Number of prizes')
...

To create a horizontal bar chart, we use barh in place of bar.

A horizontal chart necessitates swapping the horizontal and ver‐
tical axes.

270 | Chapter 10: Visualizing Data with Matplotlib

9 It’s questionable whether stacked bar charts are a particularly good way of appreciating
groups of data. See Solomon Messing’s blog for a nice discussion and one example of
“good” use.

Figure 10-7. Turning the bars on their side

Stacked bars are easy to achieve in Matplotlib.9 Example 10-8 con‐
verts Figure 10-6 to a stacked form; Figure 10-8 shows the result.
The trick is to use the bottom argument to bar to set the bottom of
the raised bars as the top of the previous group.

Example 10-8. Converting Example 10-6 to stacked bars

...
bar_width = 0.8 # bar width
xlocs = np.arange(len(foo_data))
ax.bar(xlocs, foo_data, bar_width, color='#fde0bc',
 label='Fooland')
ax.bar(xlocs, bar_data, bar_width, color='peru',
 label='Barland', bottom=foo_data)
--- labels, grids and title, then save
ax.set_yticks(range(18))
ax.set_xticks(ticks=np.array(range(len(foo_data))) + bar_width/2)
ax.set_xticklabels(labels)
ax.set_xlim(-(1-bar_width), xlocs[-1]+1)
...

The foo_data and bar_data bar groups share the same x-
locations.

Plot Types | 271

http://bit.ly/1V2dG6B

The bottom of the bar_data group is the top of the foo_data,
providing stacked bars.

Sets the x-limits manually, allowing a padding of 1-bar_width.

Figure 10-8. Stacked bar chart

Scatter Plots
Another useful chart is the scatter plot, which takes 2D arrays of
points with options for point size, color, and more.

Example 10-9 shows the code for a quick scatter plot, using Matplot‐
lib autoscaling for x and y limits. We create a noisy line by adding
normally distributed random numbers (sigma of 10). Figure 10-9
shows the resulting chart.

Example 10-9. A simple scatter plot

num_points = 100
gradient = 0.5
x = np.array(range(num_points))
y = np.random.randn(num_points) * 10 + x*gradient
fig, ax = plt.subplots(figsize=(8, 4))
ax.scatter(x, y)

fig.suptitle('A Simple Scatterplot')

randn gives normally distributed random numbers, which we
scale to be within 0 and 10 and to which we then add an x-
dependent value.

272 | Chapter 10: Visualizing Data with Matplotlib

10 Setting marker size, rather than width or radius, is actually a good default, making it
proportional to whatever value we are trying to reflect.

The equally sized x and y arrays provide the point coordinates.

Figure 10-9. A simple scatter plot

We can adjust the size and color of individual points by passing an
array of marker sizes and color indices to the current default color‐
map. One thing to note, which can be confusing, is that we are spec‐
ifying the area of the markers’ bounding boxes, not the circles’
diameters. This means if we want points to double the diameter of
the circles, we must increase the size by a factor of four.10 In
Example 10-10, we add size and color information to our simple
scatter plot, producing Figure 10-10.

Example 10-10. Adjusting point size and color

num_points = 100
gradient = 0.5
x = np.array(range(num_points))
y = np.random.randn(num_points) * 10 + x*gradient
fig, ax = plt.subplots(figsize=(8, 4))
colors = np.random.rand(num_points)
size = (2 + np.random.rand(num_points) * 8) ** 2
ax.scatter(x, y, s=size, c=colors, alpha=0.5)
fig.suptitle('Scatterplot with Color and Size Specified')

This produces 100 random color values between 0 and 1 for the
default colormap.

Plot Types | 273

We use the power notation ** to square values between 2 and
10, the width range for our markers.

We use the alpha argument to make our markers half-
transparent.

Figure 10-10. Adjusting point size and color

Matplotlib colormaps

Matplotlib has a huge variety of colormaps avail‐
able, the choice of which can significantly
improve the quality of your visualization. See
the colormap docs for details.

Adding a regression line
A regression line is a simple predictive model of the correlation
between two variables, in this case the x and y coordinates of our
scatter plot. The line is essentially a best fit through the points of the
plot, and adding one to a scatter plot is a useful dataviz technique
and a good way to demo Matplotlib, NumPy interaction.

In Example 10-11 NumPy’s very useful polyfit function is used to
generate the gradient and constant of a best-fit line for the points
defined by the x and y arrays. We then plot this line on the same
axes as the scatter plot (see Figure 10-11).

274 | Chapter 10: Visualizing Data with Matplotlib

http://matplotlib.org/users/colormaps.html

Example 10-11. Scatter plot with regression line

num_points = 100
gradient = 0.5
x = np.array(range(num_points))
y = np.random.randn(num_points) * 10 + x*gradient
fig, ax = plt.subplots(figsize=(8, 4))
ax.scatter(x, y)
m, c = np.polyfit(x, y ,1)
ax.plot(x, m*x + c)
fig.suptitle('Scatterplot With Regression-line')

We use NumPy’s polyfit in 1D to get a line gradient (m) and
constant (c) for a best-fit line through our random points.

Use the gradient and constant to plot a line on the scatter plot’s
axes (y = mx + c).

Figure 10-11. Scatter plot with regression line

It’s generally a good idea to plot confidence intervals when doing
line regression. This gives an idea of how reliable the line fit is,
based on the number and distribution of the points. Confidence
intervals can be achieved with Matplotlib and NumPy, but it is a lit‐
tle awkward. Luckily, there is a library built on Matplotlib that has
extra, specialized functions for statistical analysis and data visualiza‐
tion and, in the opinion of many, looks a lot better than Matplotlib’s
defaults. That library is Seaborn, which we are going to take a quick
look at now.

Plot Types | 275

11 It’s generally agreed that Matplotlib’s defaults aren’t that great and making them better
is an easy win for any wrapper.

12 Both D3 and Bokeh tip their hats to the classic visualization text, Leland Wilkinson’s
The Grammar of Graphics (Springer).

Seaborn
There are a number of libraries that wrap the powerful plotting abil‐
ities of Matplotlib in a more user-friendly guise11 and, as important
for us data visualizers, play nicely with Pandas:

• ggplot is a Python port of R’s highly rated ggplot2. While it’s a
very good stab, replicating a lot of the functionality of ggplot2,
its development seems quite intermittent.

• Bokeh is an interactive visualization library with the Web in
mind, producing browser-rendered output and therefore play‐
ing very nicely with IPython Notebook. It’s a great achievement,
with a design philosophy similar to D3’s.12

But for the kind of interactive, exploratory dataviz necessary to get a
feel for your data and suggest visualizations, I recommend Seaborn.
Seaborn extends Matplotlib with some powerful statistical plots and
is well integrated with the PyData stack, playing nicely with NumPy,
Pandas, and the statistical routines found in Scipy and Statsmodels.

One of the nice things about Seaborn is that it doesn’t hide the Mat‐
plotlib API, allowing you to tweak your charts with Matplotlib’s
extensive tools. In this sense, it’s not a replacement for Matplotlib
and the relevant skills, but a very impressive extension.

To work with Seaborn, simply extend your standard Matplotlib
imports:

import numpy as np
import pandas as pd
import seaborn as sns # relies on matplotlib
import matplotlib as mpl
import matplotlib.pyplot as plt

Many of Seaborn’s functions are designed to accept a Pandas Data
Frame, allowing you to specify, for example, the column values
describing 2D scattered points. Let’s take our existing x and y arrays
from Example 10-9 and use them to make some dummy data.

276 | Chapter 10: Visualizing Data with Matplotlib

https://github.com/yhat/ggplot
http://bokeh.pydata.org/en/latest/
http://stanford.edu/~mwaskom/software/seaborn/index.html
http://statsmodels.sourceforge.net/stable/

data = pd.DataFrame({'dummy x':x, 'dummy y':y})

We now have some data with columns of x ('dummy_x') and y
('dummy_y') values. Example 10-12 demonstrates the use of Sea‐
born’s dedicated linear regression plot lmplot, which produces the
chart in Figure 10-12. Note that for some Seaborn plots, to adjust
figure size we pass a size (height) in inches and an aspect ratio
(width/height). Note also that Seaborn shares pyplot’s global
context.

Example 10-12. Linear regression plot with Seaborn

data = pd.DataFrame({'dummy x':x, 'dummy y':y})
sns.lmplot('dummy x', 'dummy y', data,
 size=4, aspect=2)
plt.tight_layout()
plt.savefig('mpl_scatter_seaborn.png')

The first two arguments specify the column names of Data
Frame data, which define the coordinates of the plot points.

To set figure size, we provide the height in inches and an aspect
ratio of width/height.

Seaborn shares the pyplot global context, allowing you to save
its plots as you would Matplotlib’s.

Figure 10-12. Linear regression plot with Seaborn

As you would expect from a library that places an emphasis on
attractive-looking plots, Seaborn allows a lot of visual customiza‐

Seaborn | 277

tion. Let’s make a few changes to the look of Figure 10-12 and adjust
the confidence interval to the standard error estimate of 68% (see
Figure 10-13 for the result):

sns.lmplot('dummy x', 'dummy y', data, size=4, aspect=2,
 scatter_kws={"color": "slategray"},
 line_kws={"linewidth": 2, "linestyle":'--',
 "color": "seagreen"},
 markers='D',
 ci=68)

Provide the scatter plot component’s keyword arguments, set‐
ting our points’ color to slate gray.

Provide the line plot component’s keyword arguments, setting
line width and style.

Sets the plot markers to diamonds using Matplotlib marker
code D.

We set a confidence interval of 68%, the standard error
estimate.

Figure 10-13. Customizing the Seaborn scatter plot

Seaborn offers a number of useful plots beyond Matplotlib’s basic
set. Let’s take a look at one of the most interesting, using Seaborn’s
FacetGrid to plot reflections of multidimensional data.

278 | Chapter 10: Visualizing Data with Matplotlib

https://en.wikipedia.org/wiki/Standard_error

13 Seaborn has a number of handy datasets, which you can find on GitHub.

FacetGrids
Often referred to as “lattice” or “trellis” plotting, the ability to draw
multiple instances of the same plot on different subsets of your data‐
set is a good way to get a bird’s-eye view of your data. Large amounts
of information can be presented in one plot, and relationships
between the different dimensions can be quickly apprehended. This
technique is related to the small multiples popularized by Edward
Tufte.

FacetGrids require the data to be in the form of a Pandas DataFrame
(see “The DataFrame” on page 206) and in a form referred to by
Hadley Whickam, creator of ggplot, as “tidy,” meaning each column
in the DataFrame should be a variable and each row an observation.

Let’s use Tips, one of Seaborn’s test datasets,13 to show a FacetGrid
in action. Tips is a small set of data showing the distribution of tips
by various dimensions, such as day of the week or whether the cus‐
tomer was a smoker. First let’s load our Tips dataset into a Pandas
DataFrame using the load_dataset method:

In [0]: tips = sns.load_dataset('tips')
Out[0]:
 total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
...

To create a FacetGrid, we specify the tips DataFrame and a column
of interest, such as the smoking status of the customer. This column
will be used to create our plot groups; in this case, 'smoker=Yes'
and 'smoker=No'. We then use the grid’s map method to create mul‐
tiple scatter plots of tip size against total bill.

g = sns.FacetGrid(tips, col="smoker")
g.map(plt.scatter, "total_bill", "tip")

map takes a plot class, in this case scatter, and two (tips)
dimensions required for this scatter plot.

Seaborn | 279

https://github.com/mwaskom/seaborn-data
https://en.wikipedia.org/wiki/Small_multiple

This produces the two scatter plots shown in Figure 10-14, one for
each smoker status, with tips and total bills correlated.

Figure 10-14. A Seaborn FacetGrid using scatter plots

We can include another dimension of the tips data by specifying
the marker to be used in our scatter plots. Let’s make it a red dia‐
mond for females and a blue square for males:

pal = dict(Female='red', Male='blue')
g = sns.FacetGrid(tips, col="smoker",
 hue="sex", hue_kws={"marker": ["D", "s"]},
 palette=pal, size=4, aspect=1,)
g.map(plt.scatter, "total_bill", "tip", alpha=.4)
g.add_legend();

Adds a marker color (hue) for the sex dimension with diamond
(D) and square (s) shapes, and uses our color palette (pal) to
make them red and blue.

Figure 10-15. Scatter plot with diamond and square markers for sex

280 | Chapter 10: Visualizing Data with Matplotlib

14 regplot is equivalent to lmplot, used in Example 10-12. The latter combines regplot
and FacetGrid for convenience.

We can use rows as well as columns to create subsets of the data by
dimension. Combining the two allows, with the help of a regplot,14

five dimensions to be explored:

pal = dict(Female='red', Male='blue')
g = sns.FacetGrid(tips, col="smoker", row="time",
 hue="sex", hue_kws={"marker": ["D", "s"]},
 palette=pal, size=4, aspect=1,)
g.map(sns.regplot, "total_bill", "tip", alpha=.4)
g.add_legend();

Adds a time row to separate tips by lunch and dinner.

Figure 10-16 shows four regplots producing a linear-regression
model fit with confidence intervals for Female and Male hue-
groups. The plot titles show the data subset being used, each row
having the same time and smoker status.

Figure 10-16. Visualizing five dimensions

Seaborn | 281

15 There are also x_vars and y_vars parameters enabling you to specify nonsquare grids.

We can achieve the same effect using the lmplot we saw in
Example 10-12, which wraps the functionality of FacetGrid and
regplot for convenience. The following code produces
Figure 10-16.

pal = dict(Female='red', Male='blue')
sns.lmplot(x="total_bill", y="tip", hue="sex",\
markers=["D", "s"],
 col="smoker", row="time", data=tips, palette=pal,
 size=4, aspect=1
);

Note the use of a markers keyword as opposed to the kws_hue
dictionary we used with the FacetGrid plot.

lmplot offers a nice shortcut to producing FacetGrid regplots, but
FacetGrid’s map allows you to use the full panoply of Seaborn and
Matplotlib charts to create plots on dimensional subsets. It’s a very
powerful technique and a great way to drill down into your data.

Pairgrids
Pairgrids are another rather cool Seaborn plot type that provide a
way to quickly assess multidimensional data. Unlike with Face
tGrids, you don’t divide the dataset into subsets that are then com‐
pared by designated dimensions. With Pairgrids, the dataset’s
dimensions are all compared pair-wise in a square grid. By default
all dimensions are compared, but you can specify which ones get
plotted by providing a list to the vars parameter when declaring the
Pairgrid.15

Let’s demonstrate the utility of this pair-wise comparison by using
the classic Iris dataset, showing some vital statistics for a set contain‐
ing members of three Iris species. First we’ll load the example
dataset:

In [0]: iris = sns.load_dataset('iris')
In [1]: iris
Out[1]:
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa

282 | Chapter 10: Visualizing Data with Matplotlib

16 There are some nice D3 examples of scatter-plot matrices at the bl.ocks.org site.

2 4.7 3.2 1.3 0.2 setosa
...

To capture the relationship between petal and sepal dimensions by
species, we first create a PairGrid object, set its hue to species, and
then use its mapping methods to create plots on and off the diagonal
of the pair-wise grid, producing the charts in Figure 10-17.

sns.set(font_scale=1.5)
g = sns.PairGrid(iris, hue="species")
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter)
g.add_legend();

Tweaks the font size using Seaborn’s set method (see here to see
the full list of available tweaks.)

Sets the markers and subbars to be colored by species.

Places histograms of the species’ dimensions on the grid’s
diagonal.

Uses standard scatter plots to compare the dimensions of the
diagonal.

As you can see in Figure 10-17, a few lines of Seaborn goes a long
way in creating a richly informative set of plots correlating the dif‐
ferent Iris metrics. This plot is known as a scatter-plot matrix and is
a great way of finding linear correlations between pairs of variables
in a multivariate set. As it stands, there is redundancy in the grid: for
example, plots for sepal_width-petal_length and petal_length-
septal_width. PairGrid gives you the opportunity to use the
redundant plots above or below the main diagonal to provide a dif‐
ferent reflection of the data. Check out some of the examples at the
Seaborn docs for more info.16

I’ve covered a few of the Seaborn plots in this section, and you’ll be
seeing a few more when we explore our Nobel Prize dataset in the
next chapter. But Seaborn has a lot of other very handy and very
powerful plotting tools, mainly of a statistical nature. For further
investigation, I’d recommend starting with the main Seaborn docu‐
mentation. There are some nice examples, a well-documented API,

Seaborn | 283

https://bl.ocks.org/mbostock/3213173
http://stanford.io/1V2gP6m
http://bit.ly/1XuexDu
http://stanford.io/1YydS2V
http://stanford.io/1YydS2V
http://stanford.io/28L8ezk
http://stanford.io/28L8ezk

and some good tutorials that should complement what you’ve
learned in this chapter.

Figure 10-17. Pairgrid summation of Iris measures

Summary
This chapter introduced Matplotlib, Python’s plotting powerhouse.
It’s a big, mature library with lots of documentation and an active
community. If you have a particular customization in mind, chances
are there’s an example out there somewhere. I’d recommend firing
up IPython Qt or Notebook (now called Jupyter Notebook) and
playing around with a dataset.

We saw how Seaborn extends Matplotlib with some useful statistical
methods and that it has what many consider to be superior aesthet‐
ics. It also allows access to the Matplotlib figure and axes internals,
allowing full customization if required.

In the next chapter we’ll use Matplotlib along with Pandas to explore
our freshly scraped and cleaned Nobel dataset. We’ll use some of the
plot types demonstrated in this chapter and see a few useful new
ones.

284 | Chapter 10: Visualizing Data with Matplotlib

http://jupyter.org

CHAPTER 11

Exploring Data with Pandas

In the previous chapter, we cleaned the Nobel Prize dataset that we
scraped from Wikipedia in Chapter 6. Now it’s time to start explor‐
ing our shiny new dataset, looking for interesting patterns, stories to
tell, and anything else that could form the basis for an interesting
visualization.

First off, let’s try to clear our minds and take a long, hard look at the
data to hand to get a broad idea of the visualizations suggested.
Example 11-1 shows the form of the Nobel dataset, with categorical,
temporal, and geographical data.

Example 11-1. Our cleaned Nobel Prize dataset

[{
 'category': u'Physiology or Medicine',
 'date_of_birth': u'8 October 1927',
 'date_of_death': u'24 March 2002',
 'gender': 'male',
 'link': u'http://en.wikipedia.org/wiki/C%C3%A9sar_Milstein',
 'name': u'C\xe9sar Milstein',
 'country': u'Argentina',
 'place_of_birth': u'Bah\xeda Blanca , Argentina',
 'place_of_death': u'Cambridge , England',
 'year': 1984
 },
 ...
 }]

285

The data in Example 11-1 suggests a number of stories we might
want to investigate, among them:

• Gender disparities among the prize winners
• National trends (e.g., which country has most prizes in Eco‐

nomics)
• Details about individual winners, such as their average age on

receiving the prize or life expectancy
• Geographical journey from place of birth to adopted country

using the born_in and country fields

These investigative lines form the basis for the coming sections,
which will probe the dataset by asking questions of it, such as “How
many women other than Marie Curie have won the Nobel Prize for
Physics?”, “Which countries have the most prizes per capita rather
than absolute?”, and “Is there a historical trend to prizes by nation, a
changing of the guard from old (science) world (big European
nations) to new (US and upcoming Asians)?” Before beginning our
explorations, let’s set up IPython and load our Nobel Prize dataset.

Starting to Explore
Before starting our exploration, we need to set up our IPython envi‐
ronment. First fire up an IPython Notebook or Qt console session
from the Nobel work directory:

$ ipython [notebook | qt]

If using the latest IPython Jupyter Notebook, you’ll need to run this:

$ jupyter notebook

In your IPython Qt console or Notebook, use the magic matplotlib
command to enable inline plotting:

%matplotlib inline

Then import the standard set of data exploration modules:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import json
import seaborn as sb

plt.rcParams['figure.figsize'] = 8, 4

286 | Chapter 11: Exploring Data with Pandas

Importing Seaborn will apply its arguably superior looks to all
the plots, not just the Seaborn-specific.

Sets the default plotting size to eight inches by four.

At the end of Chapter 9, we saved our clean dataset to MongoDB
using a utility function (see “MongoDB” on page 216). Let’s load the
clean data into a Pandas DataFrame, ready to begin exploring.

df = mongo_to_dataframe('nobel_prize', 'winners_clean')

Let’s get some basic information about our dataset’s structure:

df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 858 entries, 0 to 857
Data columns (total 12 columns):
award_age 858 non-null int64
category 858 non-null object
country 858 non-null object
date_of_birth 858 non-null object
date_of_death 559 non-null object
gender 858 non-null object
link 858 non-null object
name 858 non-null object
place_of_birth 831 non-null object
place_of_death 524 non-null object
text 858 non-null object
year 858 non-null int64
dtypes: int64(2), object(10)
memory usage: 87.1+ KB

Note that our dates of birth and death columns have the standard
Pandas datatype of object. In order to make date comparisons, we’ll
need to convert those to the datetime type, datetime64. We can use
Pandas’ to_datetime method to achieve this conversion:

df.date_of_birth = pd.to_datetime(df.date_of_birth)
df.date_of_death = pd.to_datetime(df.date_of_death)

Running df.info() should now show two datetime columns:

df.info()

...
date_of_birth 858 non-null datetime64[ns]
date_of_death 559 non-null datetime64[ns]
...

Starting to Explore | 287

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.to_datetime.html

to_datetime usually works without needing extra arguments, but
it’s worth checking the converted columns to make sure. In the case
of our Nobel Prize dataset, everything checks out.

Plotting with Pandas
Both Pandas Series and DataFrames have integrated plotting, which
wraps the most common Matplotlib charts, a few of which we
explored in the last chapter. This makes it easy to get quick visual
feedback as you interact with your DataFrame. And if you want to
visualize something a little more complicated, the Pandas containers
will play nicely with vanilla Matplotlib. You can also adapt the plots
produced by Pandas using standard Matplotlib customizations.

Let’s look at an example of Pandas’ integrated plotting, starting with
a basic plot of gender disparity in Nobel Prize wins. Notoriously, the
Nobel Prize has been distributed unequally among the sexes. Let’s
get a quick feel for that disparity by using a bar plot on the gender
category. Example 11-2 produces Figure 11-1, showing the huge dif‐
ference, with men receiving 811 of the 858 prizes in our dataset.

Example 11-2. Using Pandas’ integrated plotting to see gender
disparities

by_gender = df.groupby('gender')
by_gender.size().plot(kind='bar')

Figure 11-1. Prize counts by gender

288 | Chapter 11: Exploring Data with Pandas

In Example 11-2, the Series produced by the gender group’s size
method has its own integrated plot method, which turns the raw
numbers into a chart:

by_gender.size()
Out:
gender
female 47
male 811
dtype: int64

In addition to the default line plot, the Pandas plot method takes a
kind argument to select among other possible plots. Among the
more commonly used are:

• bar or barh (h for horizontal) for bar plots
• hist for a histogram
• box for a box plot
• scatter for scatter plots

You can find a full list of Panda’s integrated plots in the docs as well
as some Pandas plotting functions that take DataFrames and Series
as arguments.

Let’s extend our investigation into gender disparities and start
extending our plotting know-how.

Gender Disparities
Let’s break down the gender numbers shown in Figure 11-1 by cate‐
gory of prize. Pandas’ groupby method can take a list of columns to
group by, with each group being accessed by multiple keys.

by_cat_gen = df.groupby(['category','gender'])

by_cat_gen.get_group(('Physics', 'female'))[['name', 'year']]
Out:
 name year
268 Maria Goeppert-Mayer 1963
613 Marie Skłodowska-Curie 1903

Gets a group using a category and gender key.

Gender Disparities | 289

http://pandas.pydata.org/pandas-docs/stable/visualization.html#other-plots

Using the size method to get the size of these groups returns a Ser
ies with a MultiIndex that labels the values by both category and
gender:

by_cat_gen.size()
Out:
category gender
Chemistry female 4
 male 167
Economics female 1
 male 74
...
Physiology or Medicine female 11
 male 191
dtype: int64

We can plot this multi-indexed Series directly, using hbar as the
kind argument to produce a horizontal bar chart. This code pro‐
duces Figure 11-2:

by_cat_gen.size().plot(kind='barh')

Figure 11-2. Plotting multikey groups

Figure 11-2 is a little crude and makes comparing gender disparities
harder than it should be. Let’s go about refining our charts to make
those disparities clearer.

290 | Chapter 11: Exploring Data with Pandas

Unstacking Groups
Figure 11-2 isn’t the easiest chart to read, even were we to improve
the sorting of the bars. Handily, Pandas Series have a cool unstack
method that takes the multiple indices—in this case, gender and cat‐
egory—and uses them as columns and indices, respectively, to create
a new DataFrame. Plotting this DataFrame gives a much more usable
plot, as it compares prize wins by gender. The following code pro‐
duces Figure 11-3:

by_cat_gen.size().unstack().plot(kind='barh')

Figure 11-3. Unstacked Series of group sizes

Let’s improve Figure 11-3 by ordering the bar groups by number of
female winners (low to high) and adding a total winners bar group
for comparison. Example 11-3 produces the chart in Figure 11-4.

Example 11-3. Sorting and summing our gender groups

cat_gen_sz = by_cat_gen.size().unstack()
cat_gen_sz['total'] = cat_gen_sz.sum(axis=1)
cat_gen_sz = cat_gen_sz.sort_values(by='female', ascending=True)
cat_gen_sz[['female', 'total', 'male']].plot(kind='barh')

Sums the male and female totals. The axis argument is 0 for
index sum, 1 for columns.

Sorts the rows using the female field, from low to high.

Gender Disparities | 291

1 Anecdotally, no one I have asked in person or in talk audiences has known the name of
the other female Nobel Prize winner for Physics.

Figure 11-4. Bars ordered by number of female winners

Ignoring Economics, a recent and contentious addition to the Nobel
Prize categories, Figure 11-4 shows that the largest discrepancy in
the number of male and female prize winners is in Physics, with
only two female winners. Let’s remind ourselves who they are:

df[(df.category == 'Physics') & (df.gender == 'female')]\
 [['name', 'country','year']]

Out:
 name country year
267 Maria Goeppert-Mayer United States 1963
611 Marie Skłodowska-Curie Poland 1903

While most people will have heard of Marie Curie, who is actually
one of the four illustrious winners of two Nobel Prizes, few have
heard of Maria Goeppert-Mayer.1 This ignorance is surprising, given
the drive to encourage women into science. I would want my visual‐
ization to enable people to discover and learn a little about Maria
Goeppert-Mayer.

292 | Chapter 11: Exploring Data with Pandas

Historical Trends
It would be interesting to see if there has been any increase in female
prize allocation in recent years. One way to visualize this would be
as grouped bars over time. Let’s run up a quick plot, using unstack
as in Figure 11-3 but using the year and gender columns.

by_year_gender = df.groupby(['year','gender'])
year_gen_sz = by_year_gender.size().unstack()
year_gen_sz.plot(kind='bar', figsize=(16,4))

Figure 11-5, the hard-to-read plot produced, is only functional. The
trend of female prize distributions can be observed, but the plot has
many problems. Let’s use Matplotlib’s and Pandas’ eminent flexibility
to fix them.

Figure 11-5. Prizes by year and gender

The first thing we need to do is reduce the number of x-axis labels.
By default, Matplotlib will label each bar or bar group of a bar plot,
which in the case of our hundred years of prizes creates a mess of
labels. What we need is the ability to thin out the number of axis
labels as desired. There are various ways to do this in Matplotlib; I’ll
demonstrate the one I’ve found to be most reliable. It’s the sort of
thing you’re going to want to reuse, so it makes sense to stick it in a
dedicated function. Example 11-4 shows a function to reduce the
number of ticks on our x-axis.

Example 11-4. Reducing the number of x-axis labels

def thin_xticks(ax, tick_gap=10, rotation=45):
 """ Thin x-ticks and adjust rotation """
 ticks = ax.xaxis.get_ticklocs()
 ticklabels = [l.get_text()\
 for l in ax.xaxis.get_ticklabels()]
 ax.xaxis.set_ticks(ticks[::tick_gap])
 ax.xaxis.set_ticklabels(ticklabels[::tick_gap],\
 rotation=rotation)
 ax.figure.show()

Gender Disparities | 293

Gets the existing locations and labels of the x-ticks, currently
one per bar.

Sets the new tick locations and labels at an interval of tick_gap
(default 10).

Rotates the labels for readability, by default on an upward
diagonal.

As well as needing to reduce the number of ticks, the x-axis in
Figure 11-5 has a discontinuous range, missing the years 1939–1945
of WWII, during which no Nobel Prizes were presented. We want to
see such gaps, so we need to set the x-axis range manually to include
all years from the start of the Nobel Prize to the current day.

The current unstacked group sizes use an automatic year index:

by_year_gender = df.groupby(['year', 'gender'])
by_year_gender.size().unstack()
Out:
gender female male
year
1901 NaN 6
1902 NaN 7
...
2014 2 11
[111 rows x 2 columns]

In order to see any gaps in the prize distribution, all we have to do is
reindex this Series with one containing the full range of years:

new_index = pd.Index(np.arange(1901, 2015), name='year')
by_year_gender = df.groupby(['year','gender'])
year_gen_sz = by_year_gender.size().unstack()
 .reindex(new_index)

Here we create a full-range index named year, covering all the
Nobel Prize years.

We replace our discontinuous index with the new continuous
one.

294 | Chapter 11: Exploring Data with Pandas

Another problem with Figure 11-5 is the excessive number of bars.
Although we do get male and female bars side by side, it looks
messy and has aliasing artifacts too. It’s better to have dedicated
male and female plots but stacked so as to allow easy comparison.
We can achieve this using the subplotting method we saw in “Axes
and Subplots” on page 263, using the Pandas data but customizing
the plot using our Matplotlib know-how. Example 11-5 shows how
to do this, producing the plot in Figure 11-6.

Example 11-5. Stacked gender prizes by year

new_index = pd.Index(np.arange(1901, 2015), name='year')
by_year_gender = df.groupby(['year','gender'])

year_gen_sz = by_year_gender.size().unstack().reindex(new_index)

fig, axes = plt.subplots(nrows=2, ncols=1,
 sharex=True, sharey=True)

ax_f = axes[0]
ax_m = axes[1]

fig.suptitle('Nobel Prize-winners by gender', fontsize=16)

ax_f.bar(year_gen_sz.index, year_gen_sz.female)
ax_f.set_ylabel('Female winners')

ax_m.bar(year_gen_sz.index, year_gen_sz.male)
ax_m.set_ylabel('Male winners')

ax_m.set_xlabel('Year')

Creates two axes, on a two (row) by one (column) grid.

We’ll share the x- and y-axes, which will make comparisons
between the two plots sensible.

We provide the axis’s bar chart (bar) method with the continu‐
ous year index and the unstacked gender columns.

Gender Disparities | 295

Figure 11-6. Prizes by year and gender, on two stacked axes

So the take-home from our investigation into gender distributions is
that there is a huge discrepancy but, as shown by Figure 11-6, a
slight improvement in recent years. Moreover, with Economics
being an outlier, the difference is greatest in the sciences. Given the
fairly small number of female prize winners, there’s not a lot more to
be seen here.

Let’s now take a look at national trends in prize wins and see if there
are any interesting nuggets for visualization.

National Trends
The obvious starting point in looking at national trends is to plot the
absolute number of prize winners. This is easily done in one line of
Pandas, broken up here for ease of reading:

df.groupby('country').size().order(ascending=False)\
 .plot(kind='bar', figsize=(12,4))

This produces Figure 11-7, showing the United States with the lion’s
share of prizes.

The absolute number of prizes will be bound to favor countries with
large populations. Let’s look at a fairer comparison, visualizing pri‐
zes per capita.

296 | Chapter 11: Exploring Data with Pandas

Figure 11-7. Absolute prize wins by country

Prize Winners per Capita
The absolute number of prize winners is bound to favor larger
countries, which raises the question, how do the numbers stack up if
we account for population sizes? In order to test prize haul per cap‐
ita, we need to divide the absolute prize numbers by population size.
In “Getting Country Data for the Nobel Dataviz” on page 135, we
downloaded some country data from the Web and stored it to Mon‐
goDB. Let’s retrieve it now and use it to produce a plot of prizes rela‐
tive to population size.

First let’s get the national group sizes, with country names as index
labels:

nat_group = df.groupby('country')
ngsz = nat_group.size()
ngsz.index
Out:
Index([u'Argentina', u'Australia', u'Austria', u'Azerbaijan',...

Now let’s load our country data into a DataFrame using our utility
function mongo_to_dataframe and remind ourselves of the data it
contains:

df_countries = mongo_to_dataframe('nobel_prize', 'countries')
df_countries.ix[0] # selects the first row by position
Out:
alpha3Code ARG
area 2.7804e+06
capital Buenos Aires
gini 44.5
latlng [-34.0, -64.0]

National Trends | 297

name Argentina
population 42669500
Name: Argentina, dtype: object

If we set the index of our country dataset to its name column and
add the ngsz national group-size Series, which also has a country
name index, the two will combine on the shared indices, giving our
country data a new nobel_wins column. We can then use this new
column to create a nobel_wins_per_capita by dividing it by popu‐
lation size:

df_countries = df_countries.set_index('name')
df_countries['nobel_wins'] = ngsz
df_countries['nobel_wins_per_capita'] =\
 df_countries.nobel_wins / df_countries.population

We now need only sort the df_countries DataFrame by its new
nobel_wins_per_cap column and plot the Nobel Prize wins per cap‐
ita, producing Figure 11-8.

df.countries.sort_values(by='nobel_wins_per_capita',\
 ascending=False).nobel_per_capita.plot(kind='bar')

Figure 11-8. National prize numbers per capita

This shows the Caribbean Island of Saint Lucia taking top place.
Home to the Nobel Prize–winning poet Derek Walcott, its small
population of 175,000 gives it a high Nobel Prizes per capita.

Let’s see how things stack up with the larger countries by filtering
the results for countries that have won more than two Nobel Prizes:

df_countries[df_countries.nobel_wins > 2]\
 .sort_values(by='nobel_wins_per_capita', ascending=False)\
 .nobel_wins_per_capita.plot(kind='bar')

298 | Chapter 11: Exploring Data with Pandas

https://en.wikipedia.org/wiki/Derek_Walcott

The results in Figure 11-9 show the Scandinavian countries and
Switzerland punching above their weight.

Figure 11-9. National prize numbers per capita, filtered for three or
more wins

Changing the metric for national prize counts from absolute to per
capita makes a big difference. Let’s now refine our search a little and
focus on the prize categories, looking for interesting nuggets there.

Prizes by Category
Let’s drill down a bit into the absolute prize data and look at wins by
category. This will require grouping by country and category col‐
umns, getting the size of those groups, unstacking the resulting Ser
ies and then plotting the columns of the resulting DataFrame. First
we get our categories with country group sizes:

nat_cat_sz = df.groupby(['country', 'category']).size()
.unstack()
nat_cat_sz
Out:
category Chemistry Economics Literature Peace \...
country
Argentina 2 NaN NaN 4
Australia NaN 2 2 NaN
Austria 6 NaN 2 4
Azerbaijan NaN NaN NaN NaN
Bangladesh NaN NaN NaN 2

National Trends | 299

We then use the nat_cat_sz DataFrame to produce subplots for the
six Nobel Prize categories:

COL_NUM = 2
ROW_NUM = 3

fig, axes = plt.subplots(ROW_NUM, COL_NUM, figsize=(12,12))

for i, (label, col) in enumerate(nat_cat_sz.iteritems()):
 ax = axes[i/COL_NUM, i%COL_NUM]
 col = col.order(ascending=False)[:10]
 col.plot(kind='barh', ax=ax)
 ax.set_title(label)

plt.tight_layout()

iteritems returns an iterator for the DataFrames columns in
form of (column_label, column) tuples.

order orders the column’s Series by first making a copy. It is
the equivalent of sort(inplace=False).

tight_layout should prevent label overlaps among the sub‐
plots. If you have any problems with tight_layout, see the end
of “Titles and Axes Labels” on page 261.

This produces the plots in Figure 11-10.

A couple of interesting nuggets from Figure 11-10 are the United
States’ overwhelming dominance of the Economics prize, reflecting
a post-WWII economic consensus, and France’s leadership of the
Literature prize.

300 | Chapter 11: Exploring Data with Pandas

Figure 11-10. Prizes by country and category

Historical Trends in Prize Distribution
Now that we know the aggregate prize stats by country, are there any
interesting historical trends to the prize distribution? Let’s explore
this with some line plots.

First, let’s increase the default font size to 20 points to make the plot
labels more legible:

plt.rcParams['font.size'] = 20

We’re going to be looking at prize distribution by year and country,
so we’ll need a new unstacked DataFrame based on these two col‐
umns. As previously, we add a new_index to give continuous years:

new_index = pd.Index(np.arange(1901, 2015), name='year')

by_year_nat_sz = df.groupby(['year', 'country'])\
 .size().unstack().reindex(new_index)

National Trends | 301

The trend we’re interested in is the cumulative sum of Nobel Prizes
by country over its history. We can further explore trends in indi‐
vidual categories, but for now we’ll look at the total for all. Pandas
has a handy cumsum method for just this. Let’s take the United States
column and plot it:

by_year_nat_sz['United States'].cumsum().plot()

This produces the chart in Figure 11-11.

Figure 11-11. Cumulative sum of US prize winners over time

The gaps in the line plot are where the fields are NaN, years when the
US won no prizes. The cumsum algorithm returns NaN here. Let’s fill
those in with a zero to remove the gaps:

by_year_nat_sz['United States'].fillna(0)
 .cumsum().plot()

This produces the cleaner chart shown in Figure 11-12.

302 | Chapter 11: Exploring Data with Pandas

Figure 11-12. Cumulative sum of US prize winners over time

Let’s compare the US prize rate with that of the rest of the world:

by_year_nat_sz = df.groupby(['year', 'country'])
 .size().unstack().fillna(0)

not_US = by_year_nat_sz.columns.tolist()
not_US.remove('United States')

by_year_nat_sz['Not US'] = by_year_nat_sz[not_US].sum(axis=1)
ax = by_year_nat_sz[['United States', 'Not US']]\
 .cumsum().plot()

Gets the list of country column names and removes United
States.

Uses our list of non-US country names to create a 'Not_US' col‐
umn, the sum of all the prizes for countries in the not_US list.

This code produces the chart shown in Figure 11-13.

National Trends | 303

Figure 11-13. United States versus rest of world prize hauls

Where the 'Not_US' haul shows a steady increase over the years of
the prize, the US shows a rapid increase around the end of World
War II. Let’s investigate that further, looking at regional differences.
We’ll focus on the two or three largest winners for North America,
Europe, and Asia:

by_year_nat_sz = df.groupby(['year', 'country'])\
 .size().unstack().reindex(new_index).fillna(0)

regions = [
 {'label':'N. America',
 'countries':['United States', 'Canada']},
 {'label':'Europe',
 'countries':['United Kingdom', 'Germany', 'France']},
 {'label':'Asia',
 'countries':['Japan', 'Russia', 'India']}
]

for region in regions:
 by_year_nat_sz[region['label']] =\
 by_year_nat_sz[region['countries']].sum(axis=1)

by_year_nat_sz[[r['label'] for r in regions]].cumsum()\
 .plot()

Our continental country list created by selecting the biggest two
or three winners in the three continents compared.

Creates a new column with a region label for each dict in the
regions list, summing its countries members.

304 | Chapter 11: Exploring Data with Pandas

Plots the cumulative sum of all the new region columns.

This gives us the plot in Figure 11-14. The rate of Asia’s prize haul
has increased slightly over the years, but the main point of note is
North America’s huge increase in prizes around the mid-1940s,
overtaking a declining Europe in total prizes around the mid-1980s.

Figure 11-14. Historical prize trends by region

Let’s improve the resolution of the previous national plots by sum‐
marizing the prize rates for the 16 biggest winners, excluding the
outlying United States:

COL_NUM = 4
ROW_NUM = 4

by_nat_sz = df.groupby('country').size()
by_nat_sz.sort_values(ascending=False,\
 inplace=True)

fig, axes = plt.subplots(COL_NUM, ROW_NUM,\
 sharex=True, sharey=True,
 figsize=(12,12))

for i, nat in enumerate(by_nat.index[1:17]):
 ax = axes[i/COL_NUM, i%ROW_NUM]
 by_year_nat_sz[nat].cumsum().plot(ax=ax)
 ax.set_title(nat)

Sorts our country groups from highest to lowest win hauls.

Gets a 4×4 grid of axes with shared x- and y-axes for normal‐
ized comparison.

National Trends | 305

Enumerates over the sorted index from second row (1), exclud‐
ing the US (0).

Selects the nat country name column and plots its cumulative
sum of prizes on the grid axis ax.

This produces Figure 11-15, which shows some nations like Japan,
Australia, and Israel on the rise historically, while others flatten off.

Figure 11-15. Prize rates for the 16 largest national winners after the
US

306 | Chapter 11: Exploring Data with Pandas

Another good way to summarize national prize rates over time is by
using a heatmap and dividing the totals by decade. This division is
also known as binning, as it creates bins of data. Pandas has a handy
cut method for just this job, taking a column of continuous values—
in our case, Nobel Prize years—and returning ranges of a specified
size. You can supply the DataFrame’s groupby method with the result
of cut and it will group by the range of indexed values. The follow‐
ing code produces Figure 11-16.

bins = np.arange(df.year.min(), df.year.max(), 10)

by_year_nat_binned = df.groupby(
 [pd.cut(df.year, bins, precision=0), 'country'])\
 .size().unstack().fillna(0)

plt.figure(figsize=(8, 8))

sns.heatmap(\
 by_year_nat_binned[by_year_nat_binned.sum(axis=1) > 2])

Gets our bin ranges for the decades from 1901 (1901, 1911,
1921…).

Cuts our Nobel Prize years into decades using the bins ranges
with precision set to 0, to give integer years.

Before heatmapping, we filter for those countries with over two
Nobel Prizes.

Figure 11-16 captures some interesting trends, such as Russia’s brief
flourishing in the 1950s, which petered out around the 1980s.

Now that we’ve investigated the Nobel Prize nations, let’s turn our
attention to the individual winners. Are there any interesting things
we can discover about them using the data at hand?

National Trends | 307

https://en.wikipedia.org/wiki/Data_binning

Figure 11-16. Nations’ Nobel Prize hauls by decade

Age and Life Expectancy of Winners
We have the date of birth for all our winners and the date of death
for 559 of them. Combined with the year in which they won their
prizes, we have a fair amount of individual data to mine. Let’s inves‐
tigate the age distribution of winners and try to glean some idea of
the winners’ longevity.

Age at Time of Award
In Chapter 9 we added an 'award_age' column to our Nobel Prize
dataset by subtracting the winners’ ages from their prize years. A
quick and easy win is to use Pandas’ histogram plot to assess this
distribution:

df['award_age'].hist(bins=20)

308 | Chapter 11: Exploring Data with Pandas

2 See Wikipedia for details. Essentially the data is smoothed and a probability density
function derived.

Here we require that the age data be divided into 20 bins. This pro‐
duces Figure 11-17, showing that the early 60s is a sweet spot for the
prize and if you haven’t achieved it by 100, it probably isn’t going to
happen. Note the outlier around 20, which is the recently awarded
17-year-old recipient of the Peace Prize, Malala Yousafzai.

Figure 11-17. Distribution of ages at time of award

We can use Seaborn’s distplot to get a better feel for the distribu‐
tion, adding a kernel density estimate (KDE)2 to the histogram. The
following one-liner produces Figure 11-18, showing that our sweet
spot is around 60 years of age:

sns.distplot(df['award_age'])

Age and Life Expectancy of Winners | 309

https://en.wikipedia.org/wiki/Kernel_density_estimation
https://en.wikipedia.org/wiki/Malala_Yousafzai

Figure 11-18. Distribution of ages at time of award with KDE super‐
imposed

A box plot is a good way of visualizing continuous data, showing the
quartiles, the first and third marking the edges of the box and the
second quartile (or median average) marking the line in the box.
Generally, as in Figure 11-19, the horizontal end lines (known as the
whisker ends) indicate the max and min of the data. Let’s use a Sea‐
born box plot and divide the prizes by gender:

sns.boxplot(df.gender, df.award_age)

This produces Figure 11-19, which shows that the distributions by
gender are similar, with women having a slightly lower average age.
Note that with far fewer female prize winners, their statistics are
subject to a good deal more uncertainty.

Figure 11-19. Ages of prize winners by gender

310 | Chapter 11: Exploring Data with Pandas

https://en.wikipedia.org/wiki/Box_plot

3 We are ignoring leap years and other subtle, complicating factors in deriving years
from days.

Seaborn’s rather nice violinplot combines the conventional box plot
with a kernel density estimation to give a more refined view of the
breakdown by age and gender. The following code produces
Figure 11-20.

sns.violinplot(df.gender, df.award_age)

Figure 11-20. Violinplots of prize-age distribution by gender

Life Expectancy of Winners
Now let’s look at the longevity of Nobel Prize winners, by subtract‐
ing the available dates of death from their respective dates of birth.
We’ll store this data in a new 'age_at_death' column:

df['age_at_death'] = (df.date_of_death - df.date_of_birth)\
 .dt.days/365

datetime64 data can be added and subtracted in a sensible fash‐
ion, producing a Pandas timedelta column. We can use its dt
method to get the interval in days, dividing this by 365 to get
the age at death as a float.

We make a copy of the 'age_at_death' column,3 removing all
empty NaN rows. This can then be used to make the histogram and
KDE shown in Figure 11-21.

Age and Life Expectancy of Winners | 311

age_at_death = df[df.age_at_death.notnull()].age_at_death

sns.distplot(age_at_death, bins=40)

Removes all NaNs to clean the data and reduce plotting errors
(e.g., distplot fails with NaNs).

Figure 11-21. Life expectancy of the Nobel Prize winners

Figure 11-21 shows the Nobel Prize winners to be a remarkably
long-lived bunch, with an average age in the early 80s. This is all the
more impressive given that the large majority of winners are men,
who have considerably lower average life expectancies in the general
population than women. One contributary factor to this longevity is
the selection bias we saw earlier. Nobel Prize winners aren’t gener‐
ally honored until they’re in their late 50s and 60s, which removes
the subpopulation who died before having the chance to be
acknowledged, pushing up the longevity figures.

Figure 11-21 shows some centenarians among the prize winners.
Let’s find them:

df[df.age_at_death > 100][['name', 'category', 'year']]
Out:
 name category year
68 Rita Levi-Montalcini Physiology or Medicine 1986
103 Ronald Coase Economics 1991

Now let’s superimpose a couple of KDEs to show differences in mor‐
tality for male and female recipients:

df2 = df[df.age_at_death.notnull()]
sns.kdeplot(df2[df2.gender == 'male']
 .age_at_death, shade=True, label='male')

312 | Chapter 11: Exploring Data with Pandas

sns.kdeplot(df2[df2.gender == 'female']
 .age_at_death, shade=True, label='female')

plt.legend()

Creates a DataFrame with only valid 'age_at_death' fields.

This produces Figure 11-22, which, allowing for the small number
of female winners and flatter distribution, shows the male and
female averages to be close. Female Nobel Prize winners seem to live
relatively shorter lives than their counterparts in the general popula‐
tion.

Figure 11-22. Nobel Prize winner life expectancies by gender

A violinplot provides another perspective, shown in Figure 11-23.

sns.violinplot(df.gender, age_at_death)

Figure 11-23. Winner life expectancies by gender

Age and Life Expectancy of Winners | 313

Increasing Life Expectancies over Time
Let’s do a little historical demographic analysis by seeing if there’s a
correlation between the date of birth of our Nobel Prize winners and
their life expectancy. We’ll use one of Seaborn’s lmplots to provide a
scatter plot and line-fitting with confidence intervals (see “Seaborn”
on page 276).

df_temp=df[df.age_at_death.notnull()]
data = pd.DataFrame(
 {'age at death':df_temp.age_at_death,
 'date of birth':df_temp.date_of_birth.dt.year})
sns.lmplot('date of birth', 'age at death', data,\
 size=6, aspect=1.5)

Creates a temporary DataFrame, removing all the rows with no
'age_at_death' field.

Creates a new DataFrame with only the two columns of interest
from the refined df_temp. We grab only the year from the
date_of_birth, using its dt accessor.

This produces Figure 11-24, showing an increase in life expectancy
of a decade or so over the prize’s duration.

Figure 11-24. Correlating date of birth with age at death

314 | Chapter 11: Exploring Data with Pandas

http://pandas.pydata.org/pandas-docs/stable/basics.html#basics-dt-accessors

The Nobel Diaspora
While cleaning our Nobel Prize dataset in Chapter 9, we found
duplicate entries recording the winner’s place of birth and country at
time of winning. We preserved these, giving us 104 winners whose
country at time of winning was different from their country of birth.
Is there a story to tell here?

A good way to visualize the movement patterns from the winners’
country of birth to their adopted country is by using a heatmap to
show all born_in/country pairs. The following code produces the
heatmap in Figure 11-25:

by_bornin_nat = df[df.born_in.notnull()].groupby(\
 ['born_in', 'country']).size().unstack()
by_bornin_nat.index.name = 'Born in'
by_bornin_nat.columns.name = 'Moved to'
plt.figure(figsize=(8, 8))

ax = sns.heatmap(by_bornin_nat, vmin=0, vmax=8)
ax.set_title('The Nobel Diaspora')

Selects all rows with a 'born_in' field, and forms groups on
this and the country column.

We rename the row index and column names to make them
more descriptive.

Seaborn’s heatmap attempts to set the correct bounds for the
data, but in this case, we must manually adjust the limits (vmin
and vmax) to see all the cells.

Figure 11-25 shows some interesting patterns, which tell a tale of
persecution and sanctuary. First, the United States is the over‐
whelming recipient of relocated Nobel winners, followed by the
United Kingdom. Note that the biggest contingents for both (except
cross-border traffic from Canada) are from Germany. Italy, Hun‐
gary, and Austria are the next largest groups. Examining the individ‐
uals in these groups shows that the majority were displaced as a
result of the rise of antisemitic fascist regimes in the run-up to
World War II and the increasing persecution of Jewish minorities.

The Nobel Diaspora | 315

Figure 11-25. The Nobel Prize diaspora

To take an example, all four of the Nobel winners who moved from
Germany to the United Kingdom were German research scientists
with Jewish ancestry who moved in response to the Nazis’ rise to
power:

df[(df.born_in == 'Germany') & (df.country == 'United Kingdom')]
 [['name', 'date_of_birth', 'category']]

Out:
 name date_of_birth category
976 Ernst Boris Chain 1906-06-19 Physiology or Medicine
1342 Hans Adolf Krebs 1900-08-25 Physiology or Medicine
1344 Max Born 1882-12-11 Physics
1360 Bernard Katz 1911-03-26 Physiology or Medicine

Ernst Chain pioneered the industrial production of penicillin. Hans
Krebs discovered the Krebs cycle, one of the most important discov‐
eries in biochemistry, which regulates the energy production of cells.
Max Born was one of the pioneers of quantum mechanics, and Ber‐

316 | Chapter 11: Exploring Data with Pandas

nard Katz uncovered the fundamental properties of synaptic junc‐
tions in neurons.

There are many such illustrious names among the winning emi‐
grants. One interesting discovery is the number of prize winners
who were part of the famous Kindertransport, an organized rescue
effort that took place nine months before the outbreak of WWII and
saw 10,000 Jewish children from Germany, Austria, Czechoslovakia,
and Poland transported to the United Kingdom. Of these children,
four went on to win a Nobel Prize.

Summary
In this chapter, we explored our Nobel Prize dataset, probing the key
fields of gender, category, country, and year (of prize) looking for
interesting trends and stories we can tell or enable visually. We used
a fair number of Matplotlib (by way of Pandas) and Seaborn’s plots,
from basic bar charts to more complicated statistical summaries like
violinplots and heatmaps. Mastery of these tools and the others in
the Python chart armory will allow you to quickly get the feel of
your datasets, which is a prerequisite to building a visualization
around them. We found more than enough stories in the data to
suggest a web visualization. In the next chapter we will imagine and
design just such a Nobel Prize winner visualization, cherry-picking
the nuggets gained in this chapter.

Summary | 317

https://en.wikipedia.org/wiki/Kindertransport

PART IV

Delivering the Data

In this part of the book, we’ll see how to deliver our select Nobel
Prize dataset, recently cleaned and explored, to the browser, wherein
JavaScript and D3 will turn it into an engaging, interactive visualiza‐
tion (see Figure IV-1).

The great thing about using a general-purpose library like Python is
that you can as easily roll a web server in a few, impressively succinct
lines, as mine your data with powerful data-processing libraries.

The key server tool in our toolchain is Flask, Python’s powerful but
lightweight web framework. In Chapter 12 we’ll see how to serve
your data statically (serving system files) and dynamically, usually as
a database selection specified in the request. In Chapter 13 we’ll see
how two Flask-based libraries make creating a RESTful web API the
work of a few lines of Python.

Figure IV-1. Delivering the data

CHAPTER 12

Delivering the Data

Chapter 6 showed how to grab your data of interest from the Web
with a web scraper. We used Scrapy to fetch a dataset of Nobel Prize
winners and then in Chapters 9 and 11 we cleaned and explored the
Nobel Prize dataset using Pandas.

This chapter will show you how to deliver data statically or dynami‐
cally from a Python server to JavaScript on the client/browser, using
our Nobel Prize dataset as an example. This data is stored in the
JSON format and consists of a list of Nobel Prize–winner objects
like the one shown in Example 12-1.

Example 12-1. Our Nobel Prize JSON data, scraped and then cleaned

[
 {
 "category": "Physiology or Medicine",
 "country": "Argentina",
 "date_of_birth": "1927-10-08T00:00:00.000Z",
 "date_of_death": "2002-03-24T00:00:00.000Z",
 "gender": "male",
 "link": "http:\/\/en.wikipedia.org\/wiki\/C%C3%A9sar_Milstein",
 "name": "C\u00e9sar Milstein",
 "place_of_birth": "Bah\u00eda Blanca , Argentina",
 "place_of_death": "Cambridge , England",
 "text": "C\u00e9sar Milstein , Physiology or Medicine, 1984",
 "year": 1984,
 "award_age": 57
 }
 ...
]

321

As with the rest of this book, the emphasis will be on minimizing
the amount of web development so you can get down to the busi‐
ness of building the web visualization in JavaScript.

A good rule of thumb is to aim to do as much
data manipulation as possible with Python—it’s
much less painful than equivalent operations in
JavaScript. Following from this, the data deliv‐
ered should be as close as possible to the form it
will be consumed in (i.e., for D3 this will usually
be a JSON array of objects, such as the one we
produced in Chapter 9).

Serving the Data
You’ll need a web server to process HTTP requests from the
browser, for the initial static HTML and CSS files used to build the
web page, and for any subsequent AJAX requests for data. During
development, this server will typically be running on a port of local‐
host (on most systems this has an IP address of 127.0.0.1). Conven‐
tionally, an index.html HTML file is used to initialize the website or,
in our case, the single-page application (SPA) constituting our web
visualization.

The Single-Line Servers
While developing or running demos that depend on static content,
it is often handy to have a little web server that just delivers the
HTML, CSS, JavaScript, and JSON files to a browser running
locally, usually on port 8000 or 8080. The classic Python solution is
SimpleHTTPServer, which can be fired up from the root directory
of your project with:

viz $ python -m SimpleHTTPServer
Serving HTTP on 0.0.0.0 port 8000 ...

SimpleHTTPServer works pretty well most of the time but is getting
a little long in the tooth. For example, it fails over quite reasonable
hurdles like streaming video. And the nature of web data visualiza‐
tion is that you are often close to those edge cases. If you have
node.js (see here for installation details) installed, I recommend the
even more succinct and more capable http-server. Install with npm
install -g http-server and run from your project root like so:

322 | Chapter 12: Delivering the Data

http://bit.ly/1Yyc364
http://bit.ly/23gGEWT

1 Flask builds on the much respected Werkzeug, a WSGI utility library for Python.

viz $ http-server
Starting up http-server, serving ./ on port: 8080
Hit CTRL-C to stop the server

Serving your SPA with a single-line server can be fine for visualiza‐
tion prototyping and sketching out ideas but gives you no control
over even basic server functionality, such as URL routing or the use
of dynamic templates. Thankfully, Python has a great little web
server that provides all the functionality a web visualizer could need
without sacrificing our aim to minimize the boilerplate and cruft
standing between our Python-processed data and JavaScripted visu‐
alization masterwork. Flask is the mini web server in question and a
worthy addition to our best-of-breed toolchain.

Most people, if they’ve heard of a Python web server, have heard of
Django. It’s a great, full-featured web framework with all sorts of
bells and whistles that make the job of creating a proper website a
breeze. It’s also huge and opinionated—for example, using its own
object-relational mapping (ORM) to access backend databases,
rather than allowing you to choose, for example, SQLAlchemy (in
my opinion Python’s best SQL library; see “SQL” on page 67). But
creating a full-featured website is beyond the scope of this book, and
Flask is a better tool for creating a simple API to serve data to a
modern web-based visualization and smoothing learning curves. It’s
considerably more lightweight than Django, allows the use of best-
of-breed components (only as many as you need), and can scale to
most conceivable dataviz tasks. It’s also mature, very well-written,1

has an active open source community, and has a slew of useful
plugins, such as the RESTful libraries we’ll be seeing in the next
chapter.

Organizing Your Flask Files
How to organize your project files is one of those really useful bits of
information that is often neglected in tutorials and the like, possibly
because things can get opinionated fast and at the end of the day, it’s
a personal preference. Nevertheless, good file organization can really
pay off, especially when you start collaborating.

Serving the Data | 323

http://werkzeug.pocoo.org/
https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface

Figure 12-1 gives a rough idea of where your files should go as you
move from the basic dataviz JavaScript prototype using a one-line
server labeled basic, through a more complex project labeled
basic+, to a typical, simple Flask setup labeled flask_project.

Figure 12-1. Organizing your server project files

The key thing with file organization is consistency. It helps enor‐
mously to have the position of files in your procedural memory.

Serving Data with Flask
If, as advised, you’re using Python’s Anaconda packages (see Chap‐
ter 1), then Flask is already available to you. Otherwise, a simple pip
install should make it available:

$ pip install Flask

With the Flask modules in hand, we can set up a server with a few
lines to serve the universal programming greeting:

nobel_viz.py
from flask import Flask
app = Flask(__name__)

@app.route("/")
def hello():
 return "Hello World!"

if __name__ == "__main__":
 app.run(port=8000, debug=True)

Flask routes allow you to direct your web traffic. This is the root
route (i.e., http://localhost:8000).

324 | Chapter 12: Delivering the Data

http://localhost:8000

Sets the localhost port the server will run on (default 5000). In
debug mode, Flask will provide useful logging to screen and in
the event of an error, a browser-based report.

Now, just go to the directory containing nobel_viz.py and run the
module:

$ python nobel_viz.py
 * Running on http://127.0.0.1:8000/ (Press CTRL+C to quit)
 * Restarting with stat
 * Debugger is active!
 * Debugger pin code: 231-942-935
...

This pin code was recently added for security reasons. See here
for more details.

You can now go to your web browser of choice and see the emphatic
result shown in Figure 12-2.

Figure 12-2. A simple message served to the browser

Templating with Jinja2
By default, Flask uses the powerful and fairly intuitive Jinja2 tem‐
plating library, which can use Python variables to configure an
HTML page. The following code shows a little template that loops
through an array of winners to create an unordered list:

<!-- testj2.html -->
<!DOCTYPE html>
<meta charset="utf-8">

<body>
 <h2>\{{ heading \}}</h2>

 {% for winner in winners %}
 <a href="{{ 'http://wikipedia.com/wiki/'
 + winner.name }}">
 {{ winner.name }}
 {{ ', category: ' + winner.category }}

 {% endfor %}

Serving the Data | 325

http://bit.ly/1tAL3b1
http://jinja.pocoo.org/docs/dev/
http://jinja.pocoo.org/docs/dev/

</body>

When using Jinja2 with Flask you will typically use the render_tem
plate method to produce an HTML response from a template in
the project’s templates (by default) directory. Any arguments made
to render_template after its first template file reference are made
available to the template. So with testj2.html in our project’s tem‐
plate directory, the following code will render the template when
the user visits the /demolist address, producing the list shown in
Figure 12-3.

...
app = Flask(__name__)
...

winners = [
 {'name': 'Albert Einstein', 'category':'Physics'},
 {'name': 'V.S. Naipaul', 'category':'Literature'},
 {'name': 'Dorothy Hodgkin', 'category':'Chemistry'}
]

@app.route('/demolist')
def demo_list():
 return render_template('testj2.html',
 heading="A little winners' list",
 winners=winners
)

Jinja2 is a powerful and mature templating language with compre‐
hensive docs, which makes it a cinch to use data to render HTML
pages server-side.

Figure 12-3. A winners’ list rendered from the testj2.html template

As we’ll see in “Dynamic Data with Flask” on page 332, pattern
matching with Flask routing makes it trivial to roll out a simple web
API. It’s also easy to use templates to generate dynamic web pages as

326 | Chapter 12: Delivering the Data

http://jinja.pocoo.org/docs/dev/
http://jinja.pocoo.org/docs/dev/

shown in Figure 12-4. Templates can be useful in visualizations for
composing essentially static HTML pages server-side, but generally
you’ll be delivering a simple HTML backbone on which to build a
visualization with JavaScript. With the visualization being config‐
ured in JavaScript, the chief job of the server (aside from delivering
the static files needed to seed the process) is to dynamically negoti‐
ate data (usually providing it) with the browser’s and JavaScript
AJAX requests.

Figure 12-4. (1) An index.html template is used to create a web page
using a message variable, which is then (2) served to the browser

Flask is perfectly capable of delivering full websites, with powerful
HTML templating, blueprints for modularizing large sites and sup‐
porting common usage patterns, and a slew of useful plugins and
extensions. Here is a good starting point for learning more, and the
API specifics can be found here. The single-page apps that charac‐
terize most web visualizations don’t need a lot of bells and whistles
server-side to deliver the necessary static files. Our key interest in
Flask is its ability to provide simple, efficient data servers, with
robust RESTful web APIs available in a few lines of Python. We’ll
demonstrate this in “Dynamic Data with Flask” on page 332 and
Chapter 13, but first let’s deal with the slower-paced delivery of
static data.

Delivering Static Files
Many websites that don’t need the overhead of dynamically config‐
ured data choose to deliver their data in a static form, which essen‐
tially means that all the HTML files and, crucially, data (usually in
JSON or CSV format), exist as files on the server’s filesystem, ready
to be delivered without, for example, making calls to a database.

Delivering Static Files | 327

http://bit.ly/1WRJnpp
http://flask.pocoo.org/docs/0.10/
http://bit.ly/1rtEO6U

2 Mike Bostock, D3’s creator, is a big advocate of examples. Here’s a great talk where he
emphasizes the role examples have played in the success of D3.

Static pages are easy to cache, meaning their delivery can be much
faster. It can also be more secure, as those database calls can be a
common attack vector for nefarious hackers (e.g., injection attacks).
The price paid for this increased speed and security is a loss of flexi‐
bility. Being limited to a set of preassembled pages means prohibit‐
ing user interactions that might demand multivariate combinations
of data.

For the budding data visualizer, there is an attraction in supplying
static data. You can easily create a standalone project without need‐
ing a web API and are able to deliver your work (in progress) as a
single folder of HTML, CSS, and JSON files.

The simplest example of data-driven web visualizations with static
files is probably that seen in the many cool D3 examples at http://
bl.ocks.org/mbostock.2 They follow a similar structure to the basic
page we discussed in “A Basic Page with Placeholders” on page 103.
Although the examples use <script> and <style> tags to embed
JavaScript and CSS in the HTML page, I’d recommend keeping your
CSS and JavaScript in separate files, where you get the advantages of
a decent format-aware editor and easier debugging.

Example 12-2 shows such an index.html basic page with <h2> and
<div> data placeholders and a <script> tag that loads a local
script.js file. As we’re only setting the font-family style, we’ll inline
the CSS in the page. With our nobel_winners.json dataset in a data
subdirectory, this gives us the following file structure:

viz
├── data
│ └── nobel_winners.json
├── index.html
└── script.js

328 | Chapter 12: Delivering the Data

http://bit.ly/1tuhZBp
https://en.wikipedia.org/wiki/SQL_injection
http://bl.ocks.org/mbostock
http://bl.ocks.org/mbostock

3 For those more familiar with jQuery’s AJAX methods, D3’s are equally as capable and
more convenient for the budding data visualizer. Check out this handy article showing
how to replace jQuery with D3.

Example 12-2. A basic HTML page with data placeholders

<!DOCTYPE html>
<meta charset="utf-8">

<style>
 body{ font-family: sans-serif; }
</style>

<h2 id='data-title'></h2>
<div id='data'>
 <pre></pre>
</div>

<script src="http://d3js.org/d3.v3.min.js"></script>
<script src="script.js"></script>

The static data file for these examples consists of a single JSON file
(nobel_winners.json) sitting in a data subdirectory. Consuming this
data requires a JavaScript AJAX call to our server. Both jQuery and
D3 provide convenient libraries for making AJAX calls, with D3’s
format-specific json, csv, and tsv methods being handier for web
visualizers.3 Example 12-3 shows how to load data with D3’s json
method using a callback function.

Example 12-3. Using D3’s json method to load data

d3.json('data/nobel_winners.json', function(error, data){

 if(error){
 console.log(error);
 }

 d3.select('h2#data-title').text('All the Nobel-winners');
 d3.select('div#data pre')
 .html(JSON.stringify(data, null, 4));

});

Delivering Static Files | 329

http://blog.webkid.io/replacing-jQuery-with-d3/
https://en.wikipedia.org/wiki/Ajax_%28programming%29

JavaScript’s JSON.stringify method is a handy way to prettify a
JavaScript object for output. Here we insert some whitespace to
indent the output by four spaces.

If you run a one-line server (e.g., http-server) in your viz directory
and open the localhost page in your web browser, you should see
something similar to Figure 12-5, indicating the data has been suc‐
cessfully delivered to JavaScript, ready to be visualized.

Figure 12-5. Delivering JSON to the browser

The nobel_winners.json dataset we’re using isn’t particularly large,
but if we were to start adding biographical body text or other textual
data, it could easily grow to a size that strains available browser
bandwidth and starts to make the user wait uncomfortably. One
strategy to limit loading times is to break the data down into subsets
based on one of the dimensions. An obvious way to do this with our
data is to store the winners by country. A few lines of Pandas does
the job of creating a suitable data directory:

import pandas as pd

df_winners = pd.read_json('data/nobel_winners.json')

for name, group in df_winners.groupby('country'):
 group.to_json('data/winners_by_country' + name + '.json',\
 orient='records')

Groups the winners DataFrame by country and iterates over the
group name and members.

This should give us a winners_by_country data subdirectory:

330 | Chapter 12: Delivering the Data

https://mzl.la/1WRMJZu

$ ls data/winners_by_country
Argentina.json Azerbaijan.json Canada.json
Colombia.json Czech Republic.json Egypt.json ...

We can now consume our data by country using a little tailor-made
function:

var loadCountryWinnersJSON = function(country){
 d3.json('data/winners_by_country/' + country + '.json',
 function(error, data) {

 if(error){ console.log(error); }

 d3.select('h2#data-title')
 .text('All the Nobel-winners from ' + country);
 d3.select('div#data pre')
 .html(JSON.stringify(data, null, 4));
 });
};

The following function call will select all the Australian Nobel Prize
winners, producing Figure 12-6:

loadCountryWinnersJSON('Australia');

Figure 12-6. Selecting winners by country

For the right visualization, the ability to select winners by country
could reduce the data bandwidth and subsequent lag, but what if we
wanted winners by year or gender? Each division by dimension (cat‐
egorical, temporal, etc.) would require its own subdirectory, creating
a mess of files and all the bookkeeping that entails. What if we
wanted to make fine-grained requests for data (e.g., all US prize
winners since 2000)? At this point we need a data server that can
respond dynamically to such requests, usually driven by user inter‐

Delivering Static Files | 331

4 Essentially, RESTful means resources being identified by a stateless, cacheable
URI/URL and manipulated by HTTP verbs such as GET or POST. See here for Wikipe‐
dia’s take and here for a little debate.

action. The next section will show you how to start crafting such a
server with Flask.

Dynamic Data with Flask
Static data delivery has its place, for the reasons just mentioned, and
is perfect for small demos and prototypes. But it is an inflexible
form of delivery and means all possible required transformations of
the data have to be created as files beforehand. Authentication and
session management to control user access to data are also more
than a little awkward with static files. If you want to restrict certain
data to certain people, it’s far better to negotiate this through an API
call. If the data is changing in size or scope, then an API can inform
the client JavaScript, the alternative being increasingly awkward
bookkeeping with JSON config files and the like. In short, there is a
reason why databases exist and why you probably want a server API
to negotiate access to them when your data requirements hit a cer‐
tain size and/or complexity.

If we’re delivering data dynamically, we’re going to need some kind
of API to enable our JavaScript to request data. In “Using Python to
Consume Data from a Web API” on page 132, we covered the types
of web API and why RESTful4 APIs are acquiring a well-deserved
prominence. Let’s see how easy it is to lay the foundations of a very
simple RESTful API with Flask.

A Simple RESTful API with Flask
Example 12-4 shows the beginnings of a very simple Flask-based
RESTful server (server_nosql.py) using MongoDB. This only
implements HTTP GET requests for consuming data.

Example 12-4. A simple RESTful Flask API

server_nosql.py
from flask import Flask, request, abort
from pymongo import MongoClient
from bson.json_util import dumps, default

332 | Chapter 12: Delivering the Data

http://bit.ly/1a1kVX5
http://bit.ly/1OuMAso

5 On our localhost development server, this route would be http://localhost:
8000/api/winners.

6 This is a dictionary of the key-value pairs specified following the ? on a web call (e.g.,
http://nobelviz/api/winners?country=USA&category=Physics gives a requests
dictionary of {'country':'USA', 'category':'Physics'}).

app = Flask(__name__)

db = MongoClient().nobel_prize

@app.route('/api/winners')
def get_country_data():

 query_dict = {}
 for key in ['country', 'category', 'year']:
 arg = request.args.get(key)
 if arg:
 query_dict[key] = arg

 winners = db.winners_clean.find(query_dict)
 if winners:
 return dumps(winners)
 abort(404) # resource not found

if __name__=='__main__':
 app.run(port=8000, debug=True)

Restricts our database queries to keys in this list.

request.args gives us access to the arguments of the request
(e.g., '?country=Australia&category=Chemistry').

Unlike Python’s native json.dumps, bson.dumps can serialize
date objects and the like to JSON.

In addition to our Flask app, we also make a db reference to the
MongoDB 'winners_clean' table we scraped from the Web and
cleaned. A single route on our app5 returns some winners from the
table. After checking for valid keys, we use the arguments6 from the
request as a direct query to the Mongo database, first converting
them to a conventional Python dict. PyMongo’s use of a dict-
specified query makes this trivial. If the db request returns data, we

Dynamic Data with Flask | 333

7 You’ll want to use the correct HTTP status codes as your APIs become more interest‐
ing. See “Getting Web Data with the requests Library” on page 127 for a rundown of
them.

send it back to the client, otherwise throwing an HTTP 404 Not
Found error.7

Let’s set our API running:

viz $ python server_nosql_basic.py
 * Running on http://127.0.0.1:8000/ (Press CTRL+C to quit)
 ...

Now let’s use requests from the Python interpreter to test our new
web API, getting all Australian winners:

import requests

response = requests.get('http://localhost:8000/api/winners',\
 params={'country':'Australia'})

response.json()
Out:
[{u'_id': {u'$oid': u'56e068e126a71108192d8534'},
 u'award_age': 47,
 u'category': u'Physiology or Medicine',
 u'country': u'Australia',
 u'date_of_birth': u'1898-09-24T00:00:00.000Z',
 u'date_of_death': u'1968-02-21T00:00:00.000Z',
 u'gender': u'male',
 u'link': u'http://en.wikipedia.org/wiki/
 Howard_Walter_Florey',
 u'name': u'Sir Howard Florey',
 u'place_of_birth': u'Adelaide , South Australia',
 u'place_of_death': u'Oxford , United Kingdom',
 u'text': u'Sir Howard Florey , Physiology or Medicine, 1945',
 u'year': 1945},
 ...
]

Because we’re using Flask in debug mode, we can see details of the
request at the console:

127.0.0.1 [...] "GET /api/winners?country=Australia HTTP" 200

Unlike our static country files in the previous section, we’re not
restricted to dividing our data on one dimension. We can, for exam‐
ple, request all the United States’ Physics winners:

334 | Chapter 12: Delivering the Data

response = requests.get('http://localhost:8000/api/winners',\
 params={'country':'United States',\
 'category':'Physics'})

response.json()
Out:
[{u'_id': {u'$oid': u'56e068e126a71108192d8262'},
 u'award_age': 42,
 u'category': u'Physics',
 u'country': u'United States',
 u'date_of_birth': u'1969-12-16T00:00:00.000Z',
 u'date_of_death': None,
 u'gender': u'male',
 u'link': u'http://en.wikipedia.org/wiki/Adam_G._Riess',
 u'name': u'Adam G. Riess',
 u'place_of_birth': u'Washington, D.C., United States',
 u'place_of_death': None,
 u'text': u'Adam G. Riess , Physics, 2011',
 u'year': 2011},
 ...

Using dataset (see “Easier SQL with Dataset” on page 75), we can
easily adapt Example 12-4 for an SQL database:

from flask import Flask, request, abort
import dataset
...
db = dataset.connect('sqlite:///data/nobel_winners.db')
...
@app.route('/api/winners')
def get_country_data():
 print 'Request args: ' + str(dict(request.args))
 query_dict = {}
 for key in ['country', 'category', 'year']:
 arg = request.args.get(key)
 if arg:
 query_dict[key] = arg

 winners = db['winners'].find(**query_dict)
 if winners:
 return dumps(winners)
 abort(404) # resource not found
...

dataset’s find method requires our argument dictionary to be
unpacked with ** (i.e., find(country='Australia', cate

gory='Literature')).

Dynamic Data with Flask | 335

You’ve now seen how easy it is to start creating a simple API. There
are lots of ways one can extend it, but for fast and dirty prototyping,
this is a handy little form.

But what if you want pagination, authentication, and a host of other
things a sophisticated RESTful API would provide? At this point
your Python spidey sense should be tingling along with a strong dis‐
inclination to reinvent the wheel. Flask is a very popular framework
and RESTful APIs are fast becoming the web standard—somebody
somewhere has probably done your job for you. In the next chapter,
we’ll see two Flask RESTful plugins in action, an SQL and a
MongoDB-based NoSQL example. These libraries allow you to roll a
full-featured RESTful API in a few lines of Python, providing all the
data cutting and slicing a budding web visualizer could possibly
need.

Using Static or Dynamic Delivery
When to use static or dynamic delivery is highly dependent on con‐
text and is an inevitable compromise. Bandwidths vary regionally
and with devices. For example, if you’re developing a visualization
that should be accessible from a smartphone in a rural context, the
data constraints are very different from those of an in-house data
app running on a local network.

The ultimate guide is user experience. If a little wait at the beginning
while the data caches leads to a lightning-fast JavaScript dataviz,
then purely static delivery may well be the answer. If you are allow‐
ing the user to cut and slice a large, multivariate dataset, then this
probably won’t be possible without an annoyingly long wait time. As
a rough rule of thumb, any dataset less than 200 KB should be fine
with purely static delivery. As you move into the megabytes of data
and beyond, you’ll probably need a database-driven API from which
to fetch your data.

Summary
This chapter explained the rudiments of static data delivery of files
on the web server, and dynamic delivery of data, sketching the basis
of a simple Flask-based RESTful web server. Although Flask makes
rolling a basic data API pretty trivial, adding such bells and whistles
as pagination, selective data queries, and the full complement of

336 | Chapter 12: Delivering the Data

HTTP verbs requires a deal more work. For such a full-featured
RESTful server, it’s best to turn, where possible, to established libra‐
ries, and Flask happens to have a number of robust, well-supported
libraries catering to the two most common use cases: SQL-based
and NoSQL-based databases. In the next chapter, we’ll see how two
of the most popular Flask RESTful libraries make creating a solid,
featureful data API a snap.

Summary | 337

1 That still leaves a lot of visualizations, such as dashboards, where user-driven changes
to data via HTTP POST, PUT, and DELETE are very much required.

CHAPTER 13

RESTful Data with Flask

In Chapter 12 we saw how to begin building a basic RESTful web
server with Flask, limited to GET requests. This allowed retrieval of
a dataset and some of its subsets. For most visualizations, the con‐
straint that data be passively consumed, not altered, is acceptable,1

but even allowing for this, a lot of fairly basic stuff was missing (e.g.,
the ability to paginate retrieved data, allowing you to control the size
of responses from the server). In this chapter, we’ll see two Flask
RESTful plugins that add this functionality and a whole lot more for
the price of a few lines of Python. I think you’ll be impressed by how
much web API can be rolled with so little.

We’ll deal with the two major use cases: serving data from SQL and
NoSQL (in the shape of MongoDB) databases with Flask-Restless
and Flask Eve, respectively.

Although there are some Flask RESTful plugins that can be adapted
to work with both SQL and NoSQL database backends (e.g., Flask-
RESTful), in my experience adapting them is a little awkward and,
given the shallow learning curve and limited boilerplate code
involved, it’s easier to stick with the specialist solutions like the two
we’re about to put through their paces. First off we’ll examine
Python Eve, a fairly recent Flask RESTful library that is impressively
full-featured and succinct.

339

A RESTful, MongoDB API with Eve
Python Eve is a plugin for the Flask framework that makes imple‐
menting a MongoDB-based RESTful API a relatively painless affair.
It’s full-featured, with a huge array of options, and has been well
thought through. If MongoDB is your database of choice, this is a
great way to deliver data to the browser with support for pagination,
authentication, and a whole load of things that should cover pretty
much every eventuality. If anything’s missing, it’s a healthy, open
source framework with a responsive development team and a large
GitHub following.

Eve isn’t part of the Anaconda Python package recommended for
this book but can easily be installed with pip:

$ pip install eve

Once Eve is installed, we can turn our existing MongoDB
'nobel_prize' database into a fully fledged RESTful API with the
addition of a couple of lines to a settings.py file. We’ll be putting our
Eve files in an api subdirectory of our root nobel_viz directory:

nobel_viz
├── index.html
├── nobel_viz.py
├── api
│ ├── server_eve.py
│ └── settings.py
...

In settings.py we specify our preferred URL prefix for the API (api),
the name of the database we’re serving (nobel_prize), and the table
we’re exposing (winners) in the DOMAIN dictionary. It’s sensible to
add a schema providing at least the type of the fields we’re exposing:

api/settings.py

Optional MONGO variables
#MONGO_HOST = 'localhost'
#MONGO_PORT = 27017
#MONGO_USERNAME = 'user'
#MONGO_PASSWORD = 'user'

URL_PREFIX = 'api'
MONGO_DBNAME = 'nobel_prize'
DOMAIN = {'winners':{
 'schema':{
 'country':{'type':'string'},

340 | Chapter 13: RESTful Data with Flask

https://github.com/nicolaiarocci/eve

 'category':{'type':'string'},
 'name':{'type':'string'},
 'year':{'type': 'integer'},
 'gender':{'type':'string'}
 }
}}

The schema allows us to expose fields in our winners data that
we want delivered with the item data. It is also used for proper
data validation. The schema definition is based on the Cerberus
grammar.

There are a huge number of Eve-specific parameters you can add to
the settings. There’s also a comprehensive section on DOMAIN con‐
figuration. With the settings specified, we need only create a tiny
server module in the same directory:

api/server_eve.py
from eve import Eve

app = Eve()

if __name__=='__main__':
 app.run(debug=True)

You can now go to the api directory and start the server, like so:

$ python server_eve.py
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
 * Restarting with stat

Testing APIs with curl
curl is a handy command-line tool for transferring data using vari‐
ous protocols. It’s pretty easy to do the same using Python’s
requests module, but sometimes curl is just that little bit more
convenient and a useful way of demonstrating the general-purpose
nature of your RESTful API, being language-agnostic. Unlike
requests, with curl you don’t have to quiz a response object to get
the output. Basic retrieval is as easy as:

curl www.example.com

curl can handle posted data, HTTP headers, and all the other
aspects of an HTTP request. See here for more details.

A RESTful, MongoDB API with Eve | 341

https://github.com/nicolaiarocci/cerberus
https://github.com/nicolaiarocci/cerberus
http://bit.ly/1tui8VC
http://bit.ly/261YMZA
http://bit.ly/261YMZA
http://curl.haxx.se/docs/manpage.html

Let’s get all the French Nobel Prize winners using a where clause to
specify our query. Note that we use curl’s -g flag to switch off its
URL globbing parser. The globbing parser interprets the brackets ({}
and []). By turning it off, we can use them to construct our Eve
query:

curl -g http://127.0.0.1:5000/api/winners\?where\=
\{\"country\":\"France\"\}
{
 "_items": [
 {
 "category": "Chemistry",
 "_updated": "Thu, 01 Jan 1970 00:00:00 GMT",
 "name": "Ir\u00e8ne Joliot-Curie",
 "gender": "female",
 "year": 1935,
 "_links": {
 "self": {
 "href": "winners\/568d03a826a7113f2cc0a86a",
 "title": "Winner"
 }
 },
 "country": "France",
 "_created": "Thu, 01 Jan 1970 00:00:00 GMT",
 "_id": "568d03a826a7113f2cc0a86a",
 "_etag": "dcaff67c8e9ab22a6830fec9313ed61c8a1c8ffc"
 },
 ...
 "_meta": {
 "max_results": 25,
 "total": 60,
 "page": 1
 }
}

Eve has Hypermedia as the Engine of Application State
(HATEOAS) enabled by default (set the domain’s hateoas vari‐
able to False in settings.py to turn it off). This allows clients to
dynamically navigate the API without knowing its structure
beforehand (see the Python Eve site for details).

Pagination is on by default, delivering a maximum of 25 items
from the 60 French winners available. The PAGINATION_DEFAULT
setting allows you to specify how large you want the item pages
to be.

342 | Chapter 13: RESTful Data with Flask

http://ec.haxx.se/cmdline-globbing.html
https://en.wikipedia.org/wiki/HATEOAS
http://python-eve.org/features.html#hateoas

2 When using MongoDB’s mathematical operators such as $gt (greater than), it’s impor‐
tant to specify the right field type (integer in the case of years) for your schema declara‐
tion in settings.py.

Eve supports the full MongoDB query document and operators,
allowing fine-grained access to the dataset. For example, let’s request
all female winners since the year 2000:2

 curl -g http://127.0.0.1:5000/api/winners\?
 where\=\{\"year\"\:\{\"\$gt\"\:2000\},
 \"gender\":\"female\"\}
{
 "_items": [
 {
 "category": "Peace",
 "_updated": "Thu, 01 Jan 1970 00:00:00 GMT",
 "name": "Leymah Gbowee",
 "gender": "female",
 "year": 2011,
 "_links": {
 "self": {
 "href": "winners\/568d03a826a7113f2cc0a8a2",
 "title": "Winner"
 }
 },
 "country": "Liberia",
 "_created": "Thu, 01 Jan 1970 00:00:00 GMT",
 "_id": "568d03a826a7113f2cc0a8a2",
 "_etag": "78126885f22a973af96e39f293df16f270a13c1e"
 },
 ...
 "_meta": {
 "max_results": 25,
 "total": 17,
 "page": 1
 }
}

Eve is extremely configurable, with a huge range of options with
which to craft a RESTful API fitting your exact requirements. For
example, you can change the query keynames (where, sort, etc.),
specify date formatting for Python datetime values, fix the HTTP
methods allowed at resource endpoints (default is ['GET']), rate-
limit requests, and set the value of the Cache-Control header field
used when serving GET requests.

A RESTful, MongoDB API with Eve | 343

https://docs.mongodb.org/manual/tutorial/query-documents/
https://docs.mongodb.org/manual/reference/operator/query/
http://python-eve.org/config.html

Using AJAX to Access the API
Now that we’ve used curl to verify that our Eve API is working, let’s
see how to access it from a browser using a JavaScript AJAX call. To
demonstrate good practice, the JavaScript consuming the data will
be run from a different server than the one running the API.

We’ll make the AJAX request from a page served by a basic Flask
web server that just delivers an index.html in the root directory. The
following code sets up that server, running on port 8080 (our API is
on port 5000) and serving a little HTML index file:

nobel_viz.py
from flask import Flask, send_from_directory

app = Flask(__name__)

@app.route('/')
def root():
 return send_from_directory('.', 'index.html')

if __name__ == '__main__':
 app.run(port=8080)

Serves a file from the directory—in this case, the local directory
(.)]—specified in the first argument.

The index.html file we’re serving has a couple of placeholders for the
request and response data, and adds the jQuery and D3 libraries
along with the script.js file containing the AJAX call:

<!-- index.html -->
<!DOCTYPE html>
<meta charset="utf-8">

<style>
 body{ font-family: sans-serif;}
</style>

<h3>Request</h3>
<div id='query'>
 <pre></pre>
</div>

<h3>Response</h3>
<div id='data'>
 <pre></pre>
</div>

344 | Chapter 13: RESTful Data with Flask

<script src="//code.jQuery.com/jQuery-1.11.0.min.js"></script>
<script src="http://d3js.org/d3.v3.min.js"></script>

<script src="static/js/script.js"></script>

To make the AJAX GET request, we’ll use one of D3’s request meth‐
ods to make an XMLHttpRequest, or XHR. D3’s convenience
method json is built on the main xhr method but is specialized for
getting JSON data. If the request is successful, the data is delivered
as fully parsed JSON, ready to use.

Example 13-1 shows the code required to make an AJAX call for
JSON data to our Eve API. The displayJSON method takes a query
string (e.g., '/winners?where={"gender":"female}') and uses it to
make a request for JSON data to the API.

Example 13-1. Making an AJAX call to the Eve API with D3

// static/js/script.js
var API_URL = 'http://localhost:5000/api';

var displayJSON = function(query) {

 d3.json(API_URL + query, function(error, data) {

 // log any error to the console as a warning
 if(error){
 return console.warn(error);
 }

 d3.select('#query pre').html(query);
 d3.select('#data pre').html(JSON.stringify(data, null, 4));
 console.log(data);
 });
};

var query = '/winners?where=' + JSON.stringify({
 "year": {"$gt":2000},
 "gender": "female"
});

displayJSON(query);

We use D3 to select our content pre tags and fill them with the
query string and the JSON data returned from the server, using
JSON.stringify to turn the JavaScript object into a formatted
JSON string.

A RESTful, MongoDB API with Eve | 345

https://github.com/mbostock/d3/wiki/Requests
https://github.com/mbostock/d3/wiki/Requests
http://en.wikipedia.org/wiki/XMLHttpRequest

Here we construct the query string to our API, with a where
argument containing the MongoDB query dictionary.

Now that our data flow is in place, let’s start the nobel_viz server
running, serving our simple index.html file:

$ python nobel_viz.py
 * Running on http://127.0.0.1:8080/ (Press CTRL+C to quit)

With the server running, if you open your browser and navigate to
http://localhost:8080, you’ll see that the AJAX call has failed. Open‐
ing the browser’s console (Ctrl-Shift-I on Chrome) will show some‐
thing like Figure 13-1 indicating that the API request has been
denied because of the CORS constraint. You can also see the
XMLHttpRequest logged-on error by the d3.json method in
Example 13-1.

Figure 13-1. Cross-origin error on request

Cross-Origin Resource Sharing
Although you can serve your data web API from the same server as
all your other HTML, that’s not a very flexible approach and it’s
often better to have the API stand alone. This means it can be used
by multiple sites and placed wherever you want (e.g., if large data‐
sets are involved, somewhere cheap and reliable). If you want to call
down data from a different server to the one generating the Java‐
Script AJAX call, you’ll run into cross-origin resource sharing
(CORS).

CORS is a mechanism that allows restricted resources on a web
page to be requested from a domain other than that from which the
resource originated. In other words, it allows your JavaScript to
request data from another website—in our case, the RESTful data
server. These types of requests are forbidden by default for security
purposes (they would make it trivial to emulate another site, for
example, possibly fooling the user into giving away sensitive infor‐
mation). CORS lets us get around this constraint by allowing the
data server (in our example) to specify whitelisted sites through its

346 | Chapter 13: RESTful Data with Flask

http://localhost:8080
http://en.wikipedia.org/wiki/Cross-origin_resource_sharing

Access-Control-Allow-Origin header. Setting this to * allows all
sites to access the data; setting it to http://foo.com allows only
requests from foo.com. Figure 13-2 shows a request loop being
mediated by CORS.

Figure 13-2. Getting data from a RESTful web API

CORS should be mediated by the HTTP server (e.g., Apache or
Nginx), but it’s useful during development to specify it at the appli‐
cation level in order to easily test your APIs.

With regard to CORS restrictions, Eve has a number of variables
that allow you to expose a standalone API to selected sites. For
example, the X_DOMAINS variable allows a list of domains that are
allowed to perform a CORS request (the default is None). X_DOMAINS
can take a string or list of strings specifying the domains from which
calls to the API are allowed (a whitelist). We are running our
nobel_viz server from http:localhost:8080, so adding the follow‐
ing to settings.py will allow the API call and stop the CORS error:

...
X_DOMAINS = 'http://localhost:8080'

If you wanted to allow all sites to access the API (only advisable dur‐
ing development and then with caution), you could use an asterisk
wildcard for X_DOMAINS:

A RESTful, MongoDB API with Eve | 347

...
X_DOMAINS = '*'

If you add our X_DOMAIN whitelist to settings.py, restart the
nobel_viz, and navigate to http:localhost:8080, you should see
something like Figure 13-3 showing that our request for all female
Nobel Prize winners since the year 2000 has been successful.

Figure 13-3. Displaying the data retrieved by AJAX to the browser
window

Now that we know how to roll a MongoDB RESTful API with Eve
and a few lines of Python, let’s see how we extend it to deliver the
Nobel Prize dataset to our Nobel Prize web visualization.

Delivering Data to the Nobel Prize
Visualization
At this point along our toolchain, we have three datasets that will be
needed for our visualization:

1. The winners dataset of basic Nobel Prize winner information,
which we cleaned in Chapter 9.

2. The winners_bios dataset of winners’ images and mini-
biographies, which we scraped in “Scrapy Pipelines” on page
181.

348 | Chapter 13: RESTful Data with Flask

3. The country data we downloaded in “Getting Country Data for
the Nobel Dataviz” on page 135, with useful national statistics.

The winners and country datasets are fairly small and will be
required to initialize the visualization. It makes sense to download
them in their entirety. The winners_bios dataset is considerably
larger than the others, containing a few paragraphs of body text for
each winner. As the biographies will only be used one at a time, it is
better that they be downloaded as required, driven by user interac‐
tion. As datasets become nontrivial, downloading the whole set and
caching in JavaScript becomes impractical. It’s likely the user will
only be interested in a tiny fraction of the data available and it’s bet‐
ter to supply that on demand with AJAX than risk a lengthy
start-up.

We’ll use MongoDB and Eve to deliver the winners’ data for our
Nobel Prize visualization. While we could keep the winners and win
ners_bios datasets separate (in an SQL database such tabular
decomposition into, say, users and biographies is usual), in a
document-based database it seems more natural to store all the data
on an individual in one document. This also simplifies our API to
one exposed domain/table. Given this, we’ll be using the merged
dataset winners_all we created in “Saving the Cleaned Dataset” on
page 251, which contains all the Nobel Prize data we scraped (with
the filepaths for our Nobel photos).

First we adapt Eve’s settings.py file with our new DOMAIN and the
X_DOMAINS variable set to allow all CORS requests (for all domains,
during development). We’ll also set the HATEOAS variable to False as
we won’t be using those links, and turn off pagination so we can get
the set of Nobel Prize winners on our first initializing request:

api/settings.py
URL_PREFIX = 'api'
DOMAIN = {'winners_full':{
 'item_title': 'winners',
 'schema':{
 'country':{'type':'string'},
 'category':{'type':'string'},
 'name':{'type':'string'},
 'year':{'type': 'integer'},
 'gender':{'type':'string'},
 'mini_bio':{'type':'string'},
 'bio_image':{'type':'string'}
 },

Delivering Data to the Nobel Prize Visualization | 349

3 Note that one limitation of MongoDB is that you can’t mix inclusive and exclusive
projections.

 'url':'winners'
}}
...
X_DOMAINS = '*'
HATEOAS = False
PAGINATION = False

Adds fields for our biographical data.

The url key allows us to change from the winners_full default
for the domain to the preferable winners (i.e., /api/winners?
\where…).

We’ll use the same server setup we saw in “Using AJAX to Access the
API” on page 344 to test our API, using the displayJSON method
from Example 13-1 to send a URL and some query data to an AJAX
GET request. If the request is successful, we’ll see the results on the
web page.

Within the visualization, we’ll be making two types of requests for
data:

1. Get the basic data for all the Nobel Prize winners without
including the large mini_bio field.

2. Get all the data for a single individual.

In order to make request 1, we need to tell our API to withhold the
mini_bio field. We can achieve this by using a cool feature of Eve,
projections. Projections allow us to selectively turn fields on (to the
exclusion of all others) or off (sending everything else).3 So to get all
the winners data without the mini-bios, we just add a projection
argument to our API request. In the following code, we use the dis
playJSON method from Example 13-1 to display the request string
and JSON response data in the browser window:

var query = '/winners?projection=' + JSON.stringify({
 "mini_bio":0
});

displayJSON(query);

350 | Chapter 13: RESTful Data with Flask

http://python-eve.org/features.html#projections

The projection argument is an exclusive dictionary that
removes the mini_bio field from the Nobel Prize winner items
returned on a request to the winners resource of our API.

This should produce Figure 13-4, showing that the items are miss‐
ing the mini_bio field.

Figure 13-4. Requesting all the winners, without the biographical text

As part of the visualization, we want the user to be able to select one
of the filtered winners from a list and then display any available
photograph and biographical text we scraped from Wikipedia. With
the dataset we’re using, the size of the biographical text is much
greater than the other fields combined, so we don’t really need to use
a projection to select it exclusively. But as a demonstration, let’s
select a certain famous Nobel Prize winner based on his name and
include the biographical data we scraped in “Scraping Text and
Images with a Pipeline” on page 183:

...

var query = '/winners?where=' + JSON.stringify({
 "name":"Albert Einstein"});

displayJSON(query);

Although for demonstration we queried for Albert Einstein by name
on the winners collection, the items in Figure 13-4 provide their
MongoDB ids with an _id field. We can use this id to request an

Delivering Data to the Nobel Prize Visualization | 351

individual winner resource directly, providing a cleaner data
response:

// on selection of Albert Einstein (albert_item):

// http://localhost:5000/api/winners/5693be6c26a7113f2cc0b601
var query = '/winners/' + albert_item._id;

displayJSON(query);

This produces a nice, clean data object shown in Figure 13-5, with
which to build a little biographical window.

Figure 13-5. Requesting the biographical data for a single Nobel Prize
winner

We now have the RESTful API needed for the Nobel Prize visualiza‐
tion and the queries required to get the data we need. In the coming
chapters, we’ll see how that data is turned into a modern, interactive
web visualization.

Eve comes with MongoDB support out of the box and, in terms of
documentation, community support, and so on, is currently a
NoSQL specialist. It was envisaged that Eve would provide support
for SQL databases, and there is a recent eve-sqlalchemy extension
that does just this. It is currently at version 0.1 and has a small (but
growing) GitHub following. For now, if you need to use an SQL
database, I’d recommend using a library dedicated to the job. Flask-

352 | Chapter 13: RESTful Data with Flask

https://github.com/RedTurtle/eve-sqlalchemy
https://flask-restless.readthedocs.org/en/latest/

4 Flask RESTful wins the GitHub stars award by a comfortable margin and is a very good
library.

Restless is a good choice and is particularly easy to get up and run‐
ning. Let’s now see how it works.

RESTful SQL with Flask-Restless
There are a number of SQL-capable Flask RESTful plugins, includ‐
ing the powerful and well-specced Flask RESTful,4 but Flask-Restless
is quite a bit easier to get up and running and for most data visuali‐
zation work (primarily about consuming data) does the job nicely.

Flask-Restless is not part of the Anaconda Python package so will
need a pip install:

$ pip install flask-restless

For this section, you will also need the Flask-SQLAlchemy plugin,
once again installed with pip:

$ pip install flask-sqlalchemy

Creating the API
With our modules installed, let’s create an API based on our stored
SQLite nobel_prize.db database (see “Saving the Cleaned Dataset” on
page 251). The winners table contains the scraped and cleaned win‐
ners data so we’ll expose that, using an SQLAlchemy schema to
specify the data we require.

Example 13-2 shows the code required to turn our winners table into
a RESTful resource.

Example 13-2. Nobel Prize winners Flask-Restless API

server_flask_restless.py
import flask
import flask.ext.sqlalchemy
import flask.ext.restless

Create the Flask application and the Flask-SQLAlchemy object.
app = flask.Flask(__name__)
app.config['DEBUG'] = True
app.config['SQLALCHEMY_DATABASE_URI'] = \

RESTful SQL with Flask-Restless | 353

https://flask-restless.readthedocs.org/en/latest/

'sqlite:///data/nobel_prize.db'

db = flask.ext.sqlalchemy.SQLAlchemy(app)

Create your Flask-SQLALchemy models as usual but with the
following two (reasonable) restrictions:
1. They must have a primary key column of type
sqlalchemy.Integer or type sqlalchemy.Unicode.
2. They must have an __init__ method which accepts keyword
arguments for all columns (the constructor in
flask.ext.sqlalchemy.SQLAlchemy.Model supplies such a
method, so you don't need to declare a new one).
class Winners(db.Model):
 __tablename__ = 'winners' # optional, default being class-name
 index = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.Unicode, unique=True)
 category = db.Column(db.Unicode)
 year = db.Column(db.Unicode)
 country = db.Column(db.Unicode)
 gender = db.Column(db.Unicode)

Create the database tables.
db.create_all()

Create the Flask-Restless API manager.
manager = flask.ext.restless.APIManager(app, flask_sqlalchemy_db=db)

Create API endpoints, which will be available at
/api/<tablename> by default.
Allowed HTTP methods can be specified as well.
manager.create_api(Winners,
 methods=['GET'], # optional POST, DELETE etc..
 max_results_per_page=1000)

start the flask loop
app.run()

The index of our saved Pandas DataFrame (see “Saving the
Cleaned Dataset” on page 251).

Flask-Restless is doing some introspective magic behind the scenes,
simplifying the boilerplate. Note that by default the name of our
db.Model (Winners) is the capitalized name of the table we’re expos‐
ing, which we can set explicitly by declaring the class __table
name__ variable. The Flask app is first used to create an SQLAlchemy
database db, which in turn creates the Winners model. The database
and app are then used to configure a Flask-Restless APIManager.

354 | Chapter 13: RESTful Data with Flask

Finally, the create_api method is used to make a resource point for
the winners table. We restrict HTTP methods to GET and increase
the maximum results per page to 1,000.

Adding CORS Support
While CORS is best handled in production servers by the likes of
Apache or Nginx, in order to test standalone API, it’s useful to be
able to regulate access during development. Flask has a handy
plugin for just this need, which works well with Flask-Restless. A
pip install will make it available:

$ pip install flask-cors

We can then add a few lines to our RESTful server (see
Example 13-2) to add CORS support.

...
from flask.ext.cors import CORS

app = flask.Flask(__name__)
...
app.config['CORS_ALLOW_HEADERS'] = "Content-Type"
app.config['CORS_RESOURCES'] = {r"/api/*": {"origins": "*"}}

...
cors = CORS(app)
...

app.run()

For development, we’ll expose the URL route /api/ to requests
from any origin.

With our API established and CORS support in place, let’s start the
RESTful server running:

$ python server_flask_restless.py
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

With our server up and running, let’s start requesting some data.

Querying the API
The Flask-Restless API provides a wide range of query operators,
allowing you full control over the data you want returned. The
Flask-Restless query engine is pretty fine-grained, essentially emu‐

RESTful SQL with Flask-Restless | 355

http://bit.ly/1Ue2eWa
http://bit.ly/23gK63y
http://bit.ly/23gJH1d
http://bit.ly/23gJH1d
http://bit.ly/1UEwBEM

lating the standard SQL operation set. The operator strings recog‐
nized by the API include:

• ==, eq, equals, equals_to
• !=, neq, does_not_equal, not_equal_to
• >, gt, <, lt
• >=, ge, gte, geq, \<=, le, lte, leq
• in, not_in
• is_null, is_not_null
• like, has, any

These correspond to the SQLAlchemy column operators.

Let’s use the displayJSON method from Example 13-1 to request
some JSON data from our API using a query string. We’ll use a cou‐
ple of filters to specify all female winners since the year 2000 and
order them by ascending year. These filters take a column name,
SQL operation (e.g., not_in), and value. The following code should
produce the browser output shown in Figure 13-6 if you navigate to
http://localhost:8080:

// ...
var filters = [{"name":"year", "op":"gte", "val":2000},
 {"name":"gender", "op":"==", "val":"female"}];

var order_by = [{"field":"year", "direction":"asc"}];

var query = '/winners?' +
 'q=' + JSON.stringify({'filters':filters,
 'order_by': order_by
 });

displayJSON(query);

As you can see from Figure 13-6, by default the output of Flask-
Restless is a good deal less sophisticated than that of Eve. The meta‐
data and HATEOS links are missing and only the item data specified
in the SQLAlchemy model is included. This would be a drawback
for certain applications, but most visualization work only really
needs these object fields.

356 | Chapter 13: RESTful Data with Flask

http://bit.ly/1UEz7uA
https://en.wikipedia.org/wiki/HATEOAS

Figure 13-6. Querying the Nobel Prize winners API

Flask-Restless gives you all the fine-grained queries you’re likely to
need and, in conjunction with SQLite, is a very lightweight solution
to a data API.

Summary
This chapter showed how Python and Flask can combine with ease
to deliver your data to the web browser with a flexible, RESTful API.
This ability really opens up the possibilities of web dataviz.
Although you can do some amazing things with your data delivered
in static files, being able to negotiate fine-grained access to a server-
side database extends the realm of web dataviz enormously.
Depending on the bandwidth available, for datasets beyond a few
hundred kilobytes, caching all the data on initialization is likely to
make for a slow, frustrating user experience.

We also saw how we’ll use Flask Eve to deliver the winners’ data our
visualization will need, using projections to dictate which data fields
are needed. In the next chapter we’ll see how that data is used to ini‐
tialize our Nobel Prize visualization.

Summary | 357

PART V

Visualizing Your Data with D3

In this part of the book, we take our hard-won Nobel Prize dataset,
scraped from the web in Chapter 6 and cleaned in Chapter 9, and
turn it into a modern, engaging, interactive web visualization using
primarily the fantastic D3 library (see Figure V-1). We’ll deliver the
main Nobel Prize dataset using the RESTful API we built in “Deliv‐
ering Data to the Nobel Prize Visualization” on page 348, and the
other data statically, as shown in “Delivering Static Files” on page
327.

We’ll cover the realization of the Nobel Prize dataviz in some detail,
acquiring D3 and JavaScript knowledge as we go. First, let’s imagine
what our visualization should be, using insights gained in Chap‐
ter 11.

You can find the Python and JavaScript source code for this visuali‐
zation in the nobel_viz directory of the book’s GitHub repo (see
“The Accompanying Code” on page 1 for details).

Figure V-1. Our dataviz toolchain: Getting the data

CHAPTER 14

Imagining a Nobel Visualization

In Chapter 13, we explored the Nobel Prize dataset, looking for
interesting stories to tell based on aspects of the data that should
engage and educate. We found some interesting nuggets, among
them:

• Maria Goeppert, the only female physicist other than Marie
Curie to win a Physics Nobel

• The post-WWII surge of American Nobels, passing the declin‐
ing tallies of the three biggest European winners, the UK, Ger‐
many, and France

• The difference in continental prize distributions
• The dominance of the Scandinavian countries when prize tallies

are adjusted for population size

These and a number of other narratives require particular types of
visualization. Comparison of Nobel Prize numbers by nation is
probably best achieved by means of a conventional bar chart,
whereas geographic prize distributions demand a map. In this chap‐
ter we will try to design a modern, interactive visualization that
incorporates some of the key stories we discovered while exploring
the dataset.

Who Is It For?
The first consideration when imagining a visualization is its target
audience. A visualization intended for display in a gallery or

361

1 A specialized dashboard, designed for experts, could tolerate more functionality than a
general-purpose educational visualization.

museum will likely be very different from one intended for an in-
house dashboard, even though they could use the same dataset. The
Nobel Prize visualization anticipated for this book has as its chief
constraint that it teach a key subset of D3 and the JavaScript needed
to create a modern interactive web visualization. It is a fairly infor‐
mal dataviz and should entertain and inform. It does not require a
specialist audience.

Choosing Visual Elements
The first constraint on our Nobel Prize visualization is that it be
simple enough to teach and provide a set of the key D3 skills. But
even if that constraint was not in place, it is probably sensible to
limit the scope of any visualization. This scope depends very much
on the context,1 but, as in many learning contexts, less is often more.
Too much interactivity risks overwhelming the user and diluting the
impact of any stories we might wish to tell.

With this in mind, let’s look at the key elements we want to include
and how these are to be visually arranged.

A menu bar of some sort is a must, allowing the user to engage with
the visualization and manipulate the data. Its functionality will
depend on the stories we choose to tell, but it will certainly provide
some way to explore or filter the dataset.

Ideally, the visualization should display each prize by year and this
display should update itself as the user refines the data through the
menu bar. Given that national and regional trends are of interest, a
map should be included, highlighting the prize-winning countries
selected and giving some indication of their tally. A bar chart is the
best way to compare the number of prizes by country, and this too
should adapt dynamically to any data changes. There should also be
a choice of measuring the absolute number of prizes by country or
per capita, taking into account the respective population sizes.

In order to personalize the visualization, we should be able to select
individual winners, showing any available picture and the short
biography we scraped from Wikipedia. This requires a list of cur‐

362 | Chapter 14: Imagining a Nobel Visualization

2 With a pixel measure, it’s worth keeping track of changing device resolutions. As of
May 2015, pretty much all devices will accommodate a 1,000×800 pixel visualization.

rently selected winners and a window in which to display the
selected individual.

The aforementioned elements provide enough scope to tell the key
stories we discovered in the last chapter and with a bit of finessing
should fit into a standard form factor.2

Our Nobel Prize visualization uses a fixed size for all devices, which
means compromising larger devices with higher resolutions in order
to accommodate smaller ones, such as last-generation smartphones
or tablets. I find that for a lot of visualization work, a fixed size gives
you much-needed control over specific placement of visual content
blocks, information boxes, labels, and so on. For some visualiza‐
tions, particularly multi-element dashboards, a different approach
may be required. Responsive web design (RWD) attempts to adapt
the look and feel of your visualization to optimize for the specific
device. Some popular CSS libraries such as Bootstrap detect the
device size (e.g., a tablet with resolution of 1,280×800 pixels) and
change the stylesheet applied in order to get the most out of the
available screen real estate. Specifying a fixed size for your visualiza‐
tion and using absolute positioning within it is the way to go if you
require pinpoint control of the placement of your visual elements.
However, you should be aware of the challenges of RWD, particu‐
larly when required to build multicomponent dashboards and the
like.

Now let’s aim to pin down the look, feel, and requirements of the
individual elements of our Nobel Prize visualization, beginning with
the main user control, the menu bar.

Menu Bar
An interactive visualization is driven by the user selecting from
options, clicking on things, manipulating sliders, and so on. These
allow the user to define the scope of the visualization, which is why
we’ll deal with them first. Our user controls will appear as a toolbar
at the top of the visualization.

A standard way to drive interesting discoveries is to allow the user
to filter the data in key dimensions. The obvious options for our

Menu Bar | 363

http://bit.ly/1rtE9CE
http://getbootstrap.com/

Nobel Prize visualization are category, gender, and country, the
focus of our exploration in the last chapter. These filters should be
cumulative, so, for example, selecting gender female and category
Physics should return the two winning female physicists. In addition
to those filters, we should have a radio button to choose between
absolute and per capita numbers of national prize winners.

Figure 14-1 shows a menu bar that meets our requirements. Placed
at the top of our visualization, it has selectors to filter our required
dimensions and a radio button to select our national winner metric,
either absolute or per capita.

Figure 14-1. The user’s controls

The menu bar will sit atop the key component of our visualization, a
chart showing all the Nobel Prizes over time. Let’s describe that next.

Prizes by Year
The last chapter showed a lot of interesting historical trends in the
Nobel Prizes by country. We also saw that although female recipients
have increased recently, they are way behind in the sciences. One
way of allowing these trends to be discovered is to show all the
Nobel Prizes on a timeline and provide a filter to select the prizes by
gender, country, and category (using the menu bar just discussed).

If we make our visualization 1,000 pixels wide then, with 114 years
of prizes to cover, we are allowed around 8 pixels per prize, enough
to differentiate them. The highest number of prizes awarded in any
one year is 14, in the year 2000, giving a minimal height for this ele‐
ment of 8×14 pixels, around 120. A circle, color-coded by category,
seems a good way to represent the individual prizes, giving us a
chart something like the one shown in Figure 14-2.

364 | Chapter 14: Imagining a Nobel Visualization

3 These 3D orthographic projections are “fake” in the sense that they do not use a 3D
graphics context, such as WebGL. There are some nice examples from Jason Davies,
bl.ocks.org, and nullschool.

4 See xkcd for an example.

5 By adjusting the alpha channel in the RGBA code with the CSS property opacity, from
0 (none) to 1 (full).

Figure 14-2. A timeline of Nobel Prizes by year, color-coded by
category

The individual prizes are the essence of the visualization, so we’ll
place this timeline prominently at the top above our central element,
which should be a map, reflecting the international nature of the
prize and allowing the user to see any global trends.

A Map Showing Selected Nobel Countries
Mapping is one of D3’s strengths, with many global projections
available, from the classic Mercator to 3D spherical presentations.3

Though maps are obviously engaging, they are also often overused
and inappropriate when presenting nongeographical data. For
example, unless you’re careful, large geographical areas, such as
countries in Europe or states of the US, tend to outweigh smaller
ones even when the latter have far larger populations. When you are
presenting demographic information, this skew is hard to avoid and
a misrepresentation can result.4

But the Nobel Prize is an international one and the distribution of
prizes by continent is of interest, making a global map a good way to
depict the filtered data. If we superimpose a filled circle at the center
of each country to reflect the prize measure (absolute or per capita),
then we avoid skewing in favor of the larger land masses. In Europe,
with many relatively small countries by land mass, these circles will
intersect. By making them slightly transparent,5 we can still see the
superimposed circles and, by adding the opacities, give a sense of
prize density. Figure 14-3 demonstrates this.

A Map Showing Selected Nobel Countries | 365

https://www.jasondavies.com/maps/rotate/
http://bl.ocks.org/dwtkns/4686432
http://earth.nullschool.net/
http://xkcd.com/1138/

Figure 14-3. Global distribution of prizes

We’ll provide a little tooltip for the map, both as a way of demon‐
strating how to build this handy visual component and also to help a
little with naming the countries. Figure 14-4 shows what we’re aim‐
ing for.

Figure 14-4. A simple tooltip for our Nobel Prize map

The last of the larger elements will be placed below the map: a bar
chart allowing the user to make clear comparisons of the number of
Nobel Prizes by country.

366 | Chapter 14: Imagining a Nobel Visualization

6 See Stephen Few’s insightful blog post.

A Bar Chart Showing Number of Winners by
Country
There is a lot of evidence that bar charts are great for making
numeric comparisons.6 A reconfigurable bar chart gives our visuali‐
zation a lot of flexibility, allowing it to present the results of user-
directed data filtering, choice of metric (i.e., absolute versus per
capita counts), and more.

Figure 14-5 shows the bar chart we’ll use to compare the prize hauls
of chosen countries. Both the axes ticks and bars should respond
dynamically to user interaction, driven by the menu bar (see
Figure 14-1). An animated transition between bar chart states would
be good and (as we’ll see in “Transitions” on page 434) pretty much
comes free with D3. As well as being attractive, there’s reason to
think such transitions are also effective communicators. See this
Stanford University paper on the effectiveness of animated transi‐
tions in data visualization for some insights.

Figure 14-5. A bar chart component

To the side of the map and bar chart, we’ll place a list of currently
selected winners and a biography box, allowing the user to discover
something about individual winners.

A List of the Selected Winners
We want the user to be able to select individual winners, displaying a
mini-biography and picture when available. The easiest way to
achieve this is to have a list box, showing the currently selected win‐

A Bar Chart Showing Number of Winners by Country | 367

http://www.perceptualedge.com/blog/?p=1492
http://stanford.io/1Ue3cBR

ners, filtered from the full dataset using the menu bar selectors.
Ordering these by year, in descending order, is a sensible default.
And although we could allow the list to be sorted by column, it
seems an unnecessary complication.

A simple HTML table with column headers should do the job here.
It will look something like Figure 14-6.

Figure 14-6. A list of selected winners

The list will have clickable rows, allowing the user to select an indi‐
vidual winner to be displayed in our last element, a small biography
box.

A Mini-Biography Box with Picture
The Nobel Prize is given to individuals, each with a story to tell. To
both humanize and enrich our visualization, we should use the indi‐
vidual mini-biographies and images we scraped from Wikipedia (see
Chapter 6) to display the result of selecting an individual from our
list element.

368 | Chapter 14: Imagining a Nobel Visualization

Figure 14-7 shows a biography box with a colored top border indi‐
cating the category of prize, with colors shared by our time chart
(Figure 14-2), a top-right photograph (when available), and the first
few paragraphs of Wikipedia’s biographic entry.

Figure 14-7. A mini-biography of the selected winner with picture, if
available

The bio-box completes our set of visual components. We can now
put them together in our specified 1,000×800 pixel frame.

The Complete Visualization
Figure 14-8 shows our complete Nobel Prize visualization with the
five key elements plus the topmost user controls arranged to fit in a
1,000×800 pixel frame. Because we decided our timeline should take
pride of place and the global map rather demanded the center, the
other elements order themselves. The bar chart needs extra width to
accommodate the labeled bars of all 58 countries, while the list of
selected winners and mini-bio fit nicely to the right.

The Complete Visualization | 369

Figure 14-8. The complete Nobel Prize visualization

Let’s summarize our imaginings before proceeding to the next chap‐
ter, where we’ll see how to realize them.

Summary
In this chapter, we imagined our Nobel visualization, establishing a
minimal set of visual elements necessary to tell the key stories dis‐
covered during our explorations of the last chapter. These fit neatly
into our complete creation, shown in Figure 14-8. In the next chap‐
ters, I will show you how to build the individual elements and how
to stitch them together to form a modern, interactive web visualiza‐
tion. We start with a gentle introduction to D3, by way of the simple
story of a bar chart.

370 | Chapter 14: Imagining a Nobel Visualization

CHAPTER 15

Building a Visualization

In Chapter 14 we used the results of our Pandas exploration of the
Nobel Prize dataset (see Chapter 11) to imagine a visualization.
Figure 15-1 shows the visualization we imagined, and in this chapter
we’ll see how to go about building it, leveraging the power of Java‐
Script and D3.

Figure 15-1. Our target, a Nobel Prize visualization

371

I’ll show how the visual elements we conceived combine to trans‐
form our freshly cleaned and processed Nobel dataset into an inter‐
active web visualization, deployable to billions of devices at the flick
of a switch. But before going into the details, let’s have a look at the
core components of a modern web visualization.

Preliminaries
Before beginning to build the Nobel visualization, let’s consider the
core components that will be used and how we will organize our
files.

Core Components
As we saw in “A Basic Page with Placeholders” on page 103, building
a modern web visualization requires four key components:

• An HTML skeleton upon which to hang our JavaScripted
creation

• One or more CSS stylesheets to govern the look and feel of the
dataviz

• The JavaScript files themselves, including any third-party libra‐
ries you might need (D3 being our biggest dependency)

• And last but not least, the data to be transformed, ideally in the
JSON or CSV (if wholly static data) format

Before we start looking at our dataviz components, let’s get the file-
structure for our Nobel Prize visualization (Nobel-viz) project in
place and establish how we’re going to feed data to our visualization.

Organizing Your Files
Example 15-1 shows the structure of our project directory. A couple
of Flask servers and an initializing index.html file are in the project’s
root, all other assets being in subdirectories of the static directory,
ready to be served as static files to the browser.

372 | Chapter 15: Building a Visualization

Example 15-1. Our Nobel-viz project’s file structure

nobel_viz
├── templates
│ └── index.html
├── notes.md
├── nobel_viz.py
├── api
│ ├── server_eve.py
│ └── settings.py
└── static
 ├── css
 │ └── style.css
 ├── data
 │ ├── world-110m.json
 │ ├── world-country-names-nobel.csv
 │ └── winning_country_data.json
 ├── images
 │ └── winners
 │ └── full
 │ ├── 002b4f05aa3758e2d6acadde4ed80aa991ed6357.jpg
 │ ├── 00d7ed381db8b5d18edc84694b7f9ce14ee57c5b.jpg
 │ ├── ...
 ├── js
 │ ├── nbviz_bar.js
 │ ├── ...
 └── lib
 ├── crossfilter.min.js

The api directory containing the Python Eve server we coded in
“Delivering Data to the Nobel Prize Visualization” on page 348.

The static data files we’ll be using, including a TopoJSON world
map (see Chapter 18) and the country data we grabbed from the
Web (see “Getting Country Data for the Nobel Dataviz” on page
135).

The Nobel Prize winners’ photos we scraped using Scrapy in
“Scraping Text and Images with a Pipeline” on page 183.

The js subdirectory contains our Nobel-viz JavaScript files, sep‐
arated into core elements and starting with nbviz_.

Preliminaries | 373

Serving the Data
We’re going to use a mixture of static and dynamic data delivery for
our app, as presented in “Delivering Static Files” on page 327 and
“Delivering Data to the Nobel Prize Visualization” on page 348. The
static data files will be stored in a static data directory
(Example 15-1, #2) and the data to be delivered dynamically stored
in a MongoDB database and served by a Python Eve RESTful API.

The use of a RESTful API for our Nobel Prize dataset is slightly con‐
trived, as the dataset, with biographical data, is not particularly large
(just over 3 MB uncompressed). But add a few more winners and
make the biographies snippets bigger, and we could easily start hit‐
ting the 10 MB mark, at which point caching the whole dataset is
going to lead to a potentially frustrating wait for the user while the
app initializes.

More to the point, being able to deliver fine-grained data from a
backend database means you can really take the gloves off as far as
creating ambitious visualizations is concerned. Any visualization
where a user is encouraged to drill down into a large dataset for
items of interest (e.g., a dashboard with stock inventories or a geo‐
graphical dataset of house prices) will probably require returning to
the server to meet the individual data demand. Being able to roll a
robust RESTful MongoDB API in a few lines is a huge win here. The
dynamic data flow demonstrated in our Nobel Prize visualization is
eminently scalable and very flexible and, to reiterate, really takes off
the static data handcuffs.

The HTML Skeleton
Although our Nobel visualization has a number of dynamic compo‐
nents, the HTML skeleton required is surprisingly simple. This
demonstrates a core theme of the book, that you need very little
conventional web development to set the stage for programming data
visualizations.

The index.html file, which creates the visualization on loading, is
shown in Example 15-2. The three components are:

374 | Chapter 15: Building a Visualization

1 I would advise saving JavaScripted styling for special occasions, doing as much as pos‐
sible with vanilla CSS.

1. A CSS stylesheet style.css, setting fonts, content-block positions,
and the like, is imported.

2. HTML placeholders for our visual elements with ids of the form
nobel-[foo].

3. The JavaScript; first third-party libraries, then our original
scripts.

We’ll cover the individual HTML sections in detail in the coming
chapters, but I wanted you to see what is essentially the entire non-
programmatic element of the Nobel Prize visualization. With this
skeleton in place, you can then turn to the job of creative program‐
ming, something D3 encourages and excels at. As you get used to
defining your content blocks in HTML, fixing dimensions and posi‐
tioning with CSS, you’ll find you spend more and more time doing
what you love best: manipulating data with code.

I find it helpful to treat the identified placehold‐
ers, such as the map holder <div id="nobel-
map"></div>, as panels owned by their
respective elements. We set the dimension and
relative positioning of these frames in the main
CSS or JS1 file and the elements, such as our
dynamic map, adapt themselves to the size of
their frame. This allows a nonprogramming
designer to change the look and feel or the visu‐
alization through CSS styling.

Example 15-2. The index.html access file to our single-page
visualization

<!DOCTYPE html>
<meta charset="utf-8">
<title>{{config.APP_TITLE}}</title>
<!-- 1. IMPORT THE visualization'S CSS STYLING -->
<link rel="stylesheet" href="static/css/style.css"
media="screen" />
<body>
 <div id='chart'>
 <!-- 2. A HEADER WITH TITLE AND SOME EXPLANATORY INFO -->

The HTML Skeleton | 375

 <div id='title'>Visualizing the Nobel Prize</div>
 <div id="info">
 This is a companion piece to the book
 Data visualization with Python and JavaScript, in which
 its construction is detailed. The data used was scraped
 Wikipedia using the <a href=
 'https://en.wikipedia.org/wiki
 /List_of_Nobel_laureates_by_country'>
 list of winners by country as a starting point. The
 accompanying Github repo is <a href=
 'http://github.com/Kyrand/dataviz-with-python-and-js'>
 here.
 </div>
 <!-- 3. THE PLACEHOLDERS FOR OUR VISUAL COMPONENTS -->
 <div id="nbviz">
 <!-- BEGIN MENU BAR -->
 <div id="nobel-menu">
 <div id="cat-select">
 Category
 <select></select>
 </div>
 <div id="gender-select">
 Gender
 <select>
 <option value="All">All</option>
 <option value="female">Female</option>
 <option value="male">Male</option>
 </select>
 </div>
 <div id="country-select">
 Country
 <select></select>
 </div>
 <div id='metric-radio'>
 Number of Winners:
 <form>
 <label>absolute
 <input type="radio" name="mode" value="0" checked>
 </label>
 <label>per-capita
 <input type="radio" name="mode" value="1">
 </label>
 </form>
 </div>
 </div>
 <!-- END MENU BAR -->
 <!-- BEGIN NOBEL-VIZ COMPONENTS -->
 <div id='chart-holder' class='_dev'>
 <!-- TIME LINE OF PRIZES -->
 <div id="nobel-time"></div>
 <!-- MAP AND TOOLTIP -->

376 | Chapter 15: Building a Visualization

 <div id="nobel-map">
 <div id="map-tooltip">
 <h2></h2>
 <p></p>
 </div>
 </div>
 <!-- LIST OF WINNERS -->
 <div id="nobel-list">
 <h2>Selected winners</h2>
 <table>
 <thead>
 <tr>
 <th id='year'>Year</th>
 <th id='category'>Category</th>
 <th id='name'>Name</th>
 </tr>
 </thead>
 <tbody>
 </tbody>
 </table>
 </div>
 <!-- BIOGRAPHY BOX -->
 <div id="nobel-winner">
 <div id="picbox"></div>
 <div id='winner-title'></div>
 <div id='infobox'>
 <div class='property'>
 <div class='label'>Category</div>

 </div>
 <div class='property'>
 <div class='label'>Year</div>

 </div>
 <div class='property'>
 <div class='label'>Country</div>

 </div>
 </div>
 <div id='biobox'></div>
 <div id='readmore'>
 Read more at Wikipedia
 </div>
 </div>
 <!-- NOBEL BAR CHART -->
 <div id="nobel-bar"></div>
 </div>
 <!-- END NOBEL-VIZ COMPONENTS -->
 </div>
 </div>
 <!-- 4. THE JAVASCRIPT FILES -->

The HTML Skeleton | 377

2 Currently around 2,560×1,600 pixels.

 <!-- THIRD-PARTY JAVASCRIPT LIBRARIES, MAINLY D3 -->
 <script ... </script>
 <!-- THE JAVASCRIPT FOR OUR NOBEL ELEMENTS -->
 <script ... </script>
</body>

The HTML skeleton (Example 15-2, #3) defines the hierarchical
structure of our Nobel-viz components, but their visual sizing and
positioning are set in the style.css file. In the next section, we’ll see
how this is done and look at the general styling of our visualization.

CSS Styling
We’ll deal with the styling of the individual chart components of our
chart (Figure 15-1) in their respective chapters. This section will
cover the remaining nonspecific CSS, most importantly the sizing
and positioning of our elements’ content blocks (panels).

The size of a visualization can be a tricky choice. There are many
more device formats out there these days, with smartphones, tablets,
mobile devices, etc. having a variety of different resolutions, such as
“retina,”2 and full HD (1,920×1,080). Most mobile devices can
pinch-and-zoom to fit visualizations, but it’s best to target a size that
will fit without such manipulation. A reasonable expectation these
days is that a device has at least 1,280×800 pixels. Using this as our
constraint, we will make our Nobel-viz 1,000 pixels wide and 800
pixels high, including our 50-pixels-high topmost user controls.

First we set some general styles we want applied to the whole docu‐
ment using the body selector; a sans-serif font, an off-white back‐
ground, and some link detailing are specified. We also set the width
of the visualization and its margins:

body {
 font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
 background: #fefefe;
 width: 1000px;
 margin: 0 auto; /* top and bottom 0, left and right auto */
}

a:link {
 color: royalblue;
 text-decoration: none;

378 | Chapter 15: Building a Visualization

}

a:hover {
 text-decoration: underline;
}

The default underlined hyperlinks look a bit fussy in my opin‐
ion, so we remove decoration.

There are three main div content blocks to our Nobel-viz, which we
position absolutely within the #chart div (their relative parent).
These are the main title (#title) , some information on the visuali‐
zation (#info), and the main container (#nbviz). The title and info
are placed by eye and the main container is placed 90 pixels from
the page top to allow them room, and given a width of 100% to
make it expand to the available space. The following CSS achieves
this:

#nbviz {
 position: absolute;
 top: 90px;
 width: 100%;
}

#title {
 position: absolute;
 font-size: 30px;
 font-weight: 100;
 top: 20px;
}

#info {
 position: absolute;
 font-size: 11px;
 top: 18px;
 width: 300px;
 right: 0px;
}

The chart-holder is given a height of 750 px, a width of 100% its
parent, and a position property of relative, meaning the absolute
positioning of its child panels will be relative to its top-left corner:

#chart-holder {
 width: 100%;
 height:750px;
 position: relative;
}

CSS Styling | 379

3 See “Projections” on page 463 for a comparison of the different geometric projections.
Given the constraint of showing all Nobel Prize–winning countries, the equirectangular
projection proved most effective.

#chart-holder svg {
 width: 100%;
 height: 100%;
}

We want the SVG contexts for our components to expand to fit
their containers.

Allowing for the Nobel-viz’s height constraint of 750 pixels, the
width/height ratio of two for our equirectangular map,3 and the
need to fit over 100 years’ worth of Nobel Prize circular indicators
into our time chart, playing with the dimensions suggests
Figure 15-2 as a good compromise for the size of our visual ele‐
ments.

Figure 15-2. The Nobel-viz’s dimensions

This CSS positions and sizes the components as shown in
Figure 15-2:

#nobel-map, #nobel-winner, #nobel-bar, #nobel-time, #nobel-list{
 position:absolute;
}

380 | Chapter 15: Building a Visualization

#nobel-time {
 top: 0;
 height: 150px;
 width: 100%;
}

#nobel-map {
 background: azure;
 top: 160px;
 width: 700px;
 height: 350px;
}

#nobel-winner {
 top: 510px;
 left: 700px;
 height: 240px;
 width: 300px;
}

#nobel-bar {
 top: 510px;
 height: 240px;
 width: 700px;
}

#nobel-list {
 top: 160px;
 height: 340px;
 width: 290px;
 left: 700px;
 padding-left: 10px;
}

We want absolute, manually adjusted positioning, relative to the
chart-holder parent container.

The timeline runs the full width of the visualization.

You can use padding to let the components “breathe.”

The other CSS styles are specific to the individual components and
will be covered in their respective chapters. With the preceding CSS,
we have an HTML skeleton on which to flesh out our visualization
with JavaScript.

CSS Styling | 381

4 See the collection at D3’s GitHub and the huge collection of 11,000 examples at block‐
builder.org.

5 ES2015 (aka EcmaScript 6), the new JavaScript specification, is almost here and will go
a long way to solving this problem. D3 v4 use ES2015 along with rollup.js for module
management.

6 Right now there are a number of competing module-loading utilities, the most used
being requireJS, browserify, and webpack. They each have pros and cons, but all have a
learning curve and require adaptation of existing modules.

The JavaScript Engine
With a visualization of any size, it’s good to start imposing some
modularity early on. Many of the D3 examples on the Web4 are one-
page solutions, combining HTML, CSS, JS, and even data on one
page. Though this is great for teaching by example, as the code base
increases, things will degenerate fast, making changes a slog and
increasing the chance of namespace collisions and the like.

Importing the Scripts
Although there are a number of more or less successful attempts to
develop a mature import/include system for JavaScript libraries, it’s
not there yet.5 For now I would advise most JavaScripters, certainly
beginners, to live with including scripts in the right order. It’s relia‐
ble, doesn’t require complicated build scripts or shims, and is good
for most small- to medium-sized projects.6

We include the JavaScript files for our visualization using <script>
tags placed at the bottom of the <body> tag in our entry index.html
file, as shown in Example 15-2:

<!DOCTYPE html>
<meta charset="utf-8">
...
<body>
...
 <!-- THIRD-PARTY JAVASCRIPT LIBRARIES, MAINLY D3 BASED -->
 <script
 src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.16
 /d3.js">
 </script>
 <script
 src="https://cdnjs.cloudflare.com/ajax/libs/topojson/
 1.6.20/topojson.min.js">
 </script>

382 | Chapter 15: Building a Visualization

https://github.com/mbostock/d3/wiki/Gallery
http://bit.ly/1ZWYnAC
http://bit.ly/1ZWYnAC
http://rollupjs.org

 <script
 src="https://cdnjs.cloudflare.com/ajax/libs/queue-async/
 1.0.7/queue.min.js">
 </script>
 <script src="static/lib/crossfilter.min.js"></script>

 <!-- THE JAVASCRIPT FOR OUR NOBEL ELEMENTS -->
 <script src="static/js/nbviz_core.js" ></script>
 <script src="static/js/nbviz_menu.js" ></script>
 <script src="static/js/nbviz_map.js"></script>
 <script src="static/js/nbviz_bar.js"></script>
 <script src="static/js/nbviz_time.js"></script>
 <script src="static/js/nbviz_details.js"></script>
 <script src="static/js/nbviz_main.js"></script>
</body>

We use cacheable online content delivery networks (CDNs) to
access most of our third-party JavaScript libraries, in this case
D3 specific.

These are the shared core JavaScript utilities, constants, and so
on.

A script for each of the visualization’s elements.

The main entry point for our Nobel app, where it requests its
first datasets and sets the display ball rolling.

We’ll use the JS-module pattern described in “Keeping Your Name‐
spaces Clean” on page 19 to establish an nbviz namespace, keeping
our global namespace clean and allowing for shared methods,
parameters, constants, and the like. Each module will expose any
necessary methods to the nbviz object, allowing them to be used in
the other scripts. For example, nbviz_map.js exposes the
nbviz.initMap and nbviz.updateMap methods. Here is the basic
structure of our modules:

/* global $, _, crossfilter, d3 */
(function(nbviz) {
 'use strict';
 //... MODULES PRIVATE VARS ETC..
 nbviz.foo = function(){ //...
 };
}(window.nbviz = window.nbviz || {}));

Defining variables as global will prevent them triggering JSLint
errors.

The JavaScript Engine | 383

http://bit.ly/1sKdjr1
http://www.jslint.com/

7 In our app, I’m keeping things as simple as possible; as the number of UI options
increases, it’s sensible to store flags, ranges, etc. in a dedicated object.

Enforces ECMAScript 5’s strict mode, a great sanity check.

Exposes this function to other scripts as part of shared nbviz
namespace.

Uses the nbviz object if available, and creates it otherwise.

In the coming chapters, the JavaScript/D3 used to produce the visu‐
alization’s elements will be explained in detail. First we’ll deal with
the flow of data through the Nobel-viz, from the (data) server to the
client browser and within the client, driven by user interaction.

Basic Data Flow
There are many ways to deal with data in a project of any complex‐
ity. For interactive apps, and particularly data visualizations, I find
the most robust pattern is to have a central data object to cache cur‐
rent data. In addition to the cached data, we also have some active
reflections or subsets of this dataset, stored in the main data object.
For example, in our Nobel-viz a user can select a number of subsets
of the data (e.g., only those winners in the Physics category).

If a different data reflection is triggered by the user, such as by
choosing the per capita prize metric, a flag7 is set (in this case, value
PerCapita is set to 0 or 1). We then update all the visual compo‐
nents, and those that depend on valuePerCapita adapt accordingly.
The size of the map indicators changes and the bar chart
reorganizes.

The key idea is to make sure the visual elements are synchronized to
any user-driven data changes. A reliable way to do this is to have a
single update method (here called onDataChange) that is called
whenever a user does something to change the data. This method
alerts all the active visual elements to the changed data and they
respond accordingly.

Let’s now see how the app’s code fits together, starting with the
shared core utilities.

384 | Chapter 15: Building a Visualization

The Core Code
The first JavaScript file loaded is nbviz_core.js. This script contains
any code we might want to share among the other scripts. For exam‐
ple, we have a categoryFill method that returns a specific color for
each category. This is used by both the timeline component and as a
border in the biography box. This core code includes functions we
might want to isolate for testing, or simply to make other modules
less cluttered.

Often in programming we use string constants
as dictionary keys and comparatives, and in gen‐
erated labels. It’s easy to slip into the bad habit of
typing these strings when required, but a much
better way is to define a constant variable
instead. For example, rather than 'if option
=== "All Categories"', we use 'if option
=== nbviz.ALL_CATS'. In the former option,
mistyping 'All Categories' will not flag an
error, an accident waiting to happen. Having a
const also means only one edit is needed to
change all occurrences of the string. Note that
unlike some languages JavaScript doesn’t have
immutable constants, but by convention upper‐
case variables should not be changed.

Example 15-3 shows the code shared between the other modules.
Anything intended to be used by other modules is attached to the
shared nbviz namespace.

Example 15-3. Shared code base in nbviz_core.js

/* global $, _, crossfilter, d3 */
(function(nbviz) {
 'use strict';

 nbviz.data = {}; // our main data object
 nbviz.valuePerCapita = 0; // metric flag
 nbviz.activeCountry = null;
 nbviz.ALL_CATS = 'All Categories';
 nbviz.TRANS_DURATION = 2000; // length in ms for our transitions
 nbviz.MAX_CENTROID_RADIUS = 30;
 nbviz.MIN_CENTROID_RADIUS = 2;
 nbviz.COLORS = {palegold:'#E6BE8A'}; // any named colors we use
 $EVE_API = 'http://localhost:5000/api/';

The JavaScript Engine | 385

http://bit.ly/1YxorUj

 nbviz.CATEGORIES = [
 "Chemistry", "Economics", "Literature", "Peace",
 "Physics", "Physiology or Medicine"
];

 nbviz.categoryFill = function(category){
 var i = nbviz.CATEGORIES.indexOf(category);
 return d3.hcl(i / nbviz.CATEGORIES.length * 360, 60, 70);
 };

 nbviz.getDataFromAPI = function(resource, callback){
 d3.json($EVE_API + resource, function(error, data) {
 //...
 });
 };

 var nestDataByYear = function(entries) {
 //...
 };

 nbviz.makeFilterAndDimensions = function(winnersData){
 //...
 };

 nbviz.filterByCountries = function(countryNames) {
 //...
 };

 nbviz.filterByCategory = function(cat) {
 //...
 };

 nbviz.getCountryData = function() {
 // ...
 };

 nbviz.onDataChange = function() {
 var data = nbviz.getCountryData();
 nbviz.updateBarChart(data);
 nbviz.updateMap(data);
 nbviz.updateList(nbviz.countryDim.top(Infinity));
 data = nestDataByYear(nbviz.countryDim.top(Infinity));
 nbviz.updateTimeChart(data);
 };

}(window.nbviz = window.nbviz || {}));

This and the following empty methods will be explained in
detail in the following chapters in a use context.

386 | Chapter 15: Building a Visualization

This function is called when the dataset changes (after initializa‐
tion of the app, this is user-driven) to update the Nobel-viz ele‐
ments. See “Basic Data Flow” on page 384 for details.

With the core code at hand, let’s see how our app is initialized, by
loading some datasets from static files and our dynamic RESTful
API.

Initializing the Nobel Prize Visualization
The Nobel Prize app is started by a set of data requests made in the
nbviz_main.js script. We use D3’s queue function, one of Mike Bos‐
tock’s many helpers, to make simultaneous requests for static data
files and the set of all winners (courtesy of our Python Eve API).
When all the calls to queue have been resolved, a callback function
specified by the await method is called with the data response and
any errors generated:

//...
var query_winners = 'winners?projection=' +
 JSON.stringify({"mini_bio":0, "bio_image":0});

queue()
 .defer(d3.json, "static/data/world-110m.json")
 .defer(d3.csv, "static/data/world-country-names-nobel.csv")
 .defer(d3.json, "static/data/winning_country_data.json")
 .defer(nbviz.getDataFromAPI, query_winners)
 .await(ready);

function ready(error, world, names, countryData, winnersData) {
// Do something cool with the data...
}

The static files consist of a world map (110m resolution) and
some country data we’ll be using in the visualization. You can
find the commonly used world-110m.json data at the topojson
GitHub repo.

This makes a request for dynamic data to our Python Eve API
using the query_winners arguments to exclude the superfluous
biographical details (i.e., http://localhost:5000/api/

winners?projection=%7B%22mini_bio...).

In the call to queue, we make use of a nbviz.getDataFromAPI
method (defined in nbviz_core.js), which wraps a D3 AJAX call to

The JavaScript Engine | 387

https://github.com/d3/d3-queue
http://bit.ly/268d0EI
http://bit.ly/268d0EI

our Python Eve API (running on localhost, port 5000).
Example 15-4 shows code for getDataFromAPI.

Example 15-4. A wrapper function to get data from our RESTful API
using a resource string and some query data

var $EVE_API = 'http://localhost:5000/api/';

nbviz.getDataFromAPI = function(resource, callback){
 d3.json($EVE_API + resource, function(error, data) {
 if(error){
 return callback(error);
 }
 if('_items' in data){
 callback(null, data._items);
 }
 else{
 callback(null, data);
 }
 });

Accepts a resource (e.g., winners?projection={'mini_bio':
0,'bio_image':0}) and a callback to be invoked when the
request to our Python Eve API has resolved.

If the response data has an items field, then we’re dealing with a
set of MongoDB items; otherwise, we have an individual
resource (i.e., the data for a single Nobel prize winner).

The callback accepts an error argument (null here) and some
response data.

If our data requests are successful, the ready function receives the
requested data and we’re ready to start sending data to the visual
elements.

Ready to Go
After the deferred requests for data made by the queue method are
resolved, it calls the specified ready function, passing the datasets as
arguments in the order in which they were added.

The ready function is shown in Example 15-5. If the data has down‐
loaded without error, we use the winners’ data to create the active
filter (courtesy of the Crossfilter library) we will use to allow the

388 | Chapter 15: Building a Visualization

user to select subsets of the Nobel winners based on category, gen‐
der, and country. We then call some initializer methods, and finally
use the onDataChange method to trigger a drawing of the visual ele‐
ments of dataviz, updating bar chart, map, timeline, and so on. The
schematic in Figure 15-3 shows the way in which data changes prop‐
agate.

Example 15-5. The ready function is called when the initial data
requests have resolved

//...
 function ready(error, worldMap, countryNames, countryData,
 winnersData) {
 // LOG ANY ERROR TO CONSOLE
 if(error){
 return console.warn(error);
 }
 // STORE OUR COUNTRY-DATA DATASET
 nbviz.data.countryData = countryData;
 // MAKE OUR FILTER AND ITS DIMENSIONS
 nbviz.makeFilterAndDimensions(winnersData);
 // INITIALIZE MENU AND MAP
 nbviz.initMenu();
 nbviz.initMap(worldMap, countryNames);
 // TRIGGER UPDATE WITH FULL WINNERS' DATASET
 nbviz.onDataChange();
 }
}(window.nbviz = window.nbviz || {}));

This method uses the freshly loaded Nobel Prize dataset to cre‐
ate the filter we will use to allow the user to select subsets of the
data to visualize. See “Filtering Data with Crossfilter” on page
392 for details.

We’ll see how the makeFilterAndDimensions method
(Example 15-5,) works when we cover the Crossfilter library in
“Filtering Data with Crossfilter” on page 392. For now, we’ll assume
we have a means of getting the data currently selected by the user via
some menu selectors (e.g., selecting all female winners).

The JavaScript Engine | 389

Figure 15-3. The app’s main data flow

Data-Driven Updates
After the menu and map have been initialized in the ready function
(we’ll see how that works in their respective chapters: Chapter 18 for
the map and Chapter 20 for the menu), we trigger an update of the
visual elements with the onDataChange method defined in
nbviz_core.js. onDataChange (see Example 15-6) is a shared function
that is called whenever the set of displayed data changes in response
to user interaction, or when the user chooses a different country
prize metric (e.g., measuring per capita rather than absolute
numbers).

Example 15-6. Function called to update the visual elements when
selected data is changed

// nbviz_core.js
nbviz.onDataChange = function() {
 var data = nbviz.getCountryData();
 nbviz.updateBarChart(data);
 nbviz.updateMap(data);
 nbviz.updateList(nbviz.countryDim.top(Infinity));
 data = nestDataByYear(nbviz.countryDim.top(Infinity));
 nbviz.updateTimeChart(data);
};

390 | Chapter 15: Building a Visualization

getCountryData returns a tailored data array, based on group‐
ing the winners by country and adding some data from our
country dataset. See Example 15-7 for details.

Passes an array of all selected winners to the updateList
method (see Chapter 19 for details).

Our time chart needs a nested dataset. We’ll cover the construc‐
tion of this in Chapter 17.

The main dataset, consumed by the timeline, map, and bar chart, is
produced by the getCountryData method, which groups the prize
winners by country and adds some national information, namely
population size and international alphacode. Example 15-7 breaks
this method down.

Example 15-7. Creating the main country dataset

nbviz.getCountryData = function() {
 var countryGroups = nbviz.countryDim.group().all();

 // make main data-ball
 var data = countryGroups.map(function(c) {
 var cData = nbviz.data.countryData[c.key];
 var value = c.value;
 // if per capita value then divide by pop. size
 if(nbviz.valuePerCapita){
 value = value / cData.population;
 }
 return {
 key: c.key, // e.g., Japan
 value: value, // e.g., 19 (prizes)
 code: cData.alpha3Code, // e.g., JPN
 };
 })
 .sort(function(a, b) {
 return b.value - a.value; // descending
 });

 return data;
};

countryDim is one of our Crossfilter dimensions (see “Filtering
Data with Crossfilter” on page 392), here providing group key,
value counts (e.g., {key:Argentina, value:5}).

The JavaScript Engine | 391

8 See http://square.github.io/crossfilter/ for an impressive example.

We use the array’s map method to create a new array with added
components from our country dataset.

Fetches country data using our group key (e.g., Australia).

Makes the country prize rate a per capita one if valuePerCapita
integer is 1.

Uses Array’s sort method to make the array descending by
value.

The update methods of our Nobel-viz elements all make use of data
filtered by the Crossfilter library. Let’s see how that’s done now.

Filtering Data with Crossfilter
Developed by D3’s creators, Mike Bostock and Jason Davies, Cross‐
filter8 is a highly optimized library for exploring large, multivariate
datasets using JavaScript. It’s very fast and can easily handle datasets
far larger than our Nobel Prize dataset. We’ll be using it to filter our
dataset of winners by the dimensions of category, gender, and
country.

The choice of Crossfilter is slightly ambitious, but I wanted to show
it in action as I’ve found it to be so useful personally. It’s also the
basis of dc.js, the very popular D3 charting library, which testifies to
its usefulness. Although Crossfilter can be a little difficult to grasp,
especially when we start intersecting dimensional filters, most use
cases follow a basic pattern that is quickly absorbed. If you ever find
yourself trying to cut and slice large datasets, Crossfilter’s optimiza‐
tions will prove a boon.

Creating the filter

On initializing the Nobel-viz, the makeFilterAndDimensions

method defined in nbviz_core.js is called from the ready method in
nbviz_main.js (see “Ready to Go” on page 388). makeFilterAndDi
mensions uses the freshly loaded Nobel Prize dataset to create a
Crossfilter filter and some dimensions (e.g., prize category) based
on it.

392 | Chapter 15: Building a Visualization

http://square.github.io/crossfilter/
https://dc-js.github.io/dc.js/

We first create our filter using the dataset of Nobel Prize winners
returned by our Python Eve API. Let’s remind ourselves what that
looks like:

// winners =
[{
 name:"C\u00e9sar Milstein",
 category:"Physiology or Medicine",
 gender:"male",
 country:"Argentina",
 year: 1984
 },
 {
 name:"Auguste Beernaert",
 category:"Peace",
 gender:"male",
 country:"Belgium",
 year: 1909
 },
 ...
}];

To create our filter, call the crossfilter function with the array of
winner objects:

nbviz.makeFilterAndDimensions = function(winnersData){
 // ADD OUR FILTER AND CREATE CATEGORY DIMENSIONS
 nbviz.filter = crossfilter(winnersData);
 //...
};

Crossfilter works by allowing you to create dimensional filters on
your data. You do so by applying a function to the objects. At its
simplest, this creates a dimension based on a single category—for
example, by gender. Here we create the gender dimension we’ll use
to filter Nobel Prizes by sex:

nbviz.makeFilterAndDimensions = function(winnersData){
//...
 nbviz.genderDim = nbviz.filter.dimension(function(o) {
 return o.gender;
 });
//...

This dimension now has an efficient ordering of our dataset by the
gender field. We can use it like this, to return all objects with gender
female:

nbviz.genderDim.filter('female');
var femaleWinners = nbviz.genderDim.top(Infinity);
femaleWinners.length // 47

The JavaScript Engine | 393

9 JavaScript’s Infinity is a numeric value representing infinity.
10 Crossfilter was designed to update millions of records in real time, in response to user

input.
11 This will clear all the filters on this dimension.

filter takes a single value or, where appropriate, a range (e.g.,
[5, 21]—all values between 5 and 21). It can also take a Boolean
function of the values.

Once the filter is applied, top returns the specified number of
ordered objects. Specifying Infinity9 returns all the filtered
data objects.

Crossfilter really comes into its own when we start applying multiple
dimensional filters, allowing us to slice and dice the data into any
subsets we require, all achieved with impressive speed.10

Let’s clear the gender dimension and add a new one, filtering by
prize-winning category. To reset a dimension,11 apply the filter
method without arguments:

nbviz.genderDim.filter();
nbviz.genderDim.top(Infinity) // the full Array[858] of objects

We’ll now create a new prize category dimension:

nbviz.categoryDim = nbviz.filter.dimension(function(o) {
 return o.category;
});

We can now filter the gender and category dimensions in sequence,
allowing us to find, for example, all female Physics prize winners:

nbviz.genderDim.filter('female');
nbviz.categoryDim.filter('Physics');
nbviz.genderDim.top(Infinity);
// Out:
// [
// {name:"Marie Sklodowska-Curie", category:"Physics",...
// {name:"Maria Goeppert-Mayer", category:"Physics",...
//]

394 | Chapter 15: Building a Visualization

https://mzl.la/1OuMLUG

12 See the Crossfilter GitHub page.

Note that we can turn the filters on and off selectively. So, for exam‐
ple, we can remove the Physics category filter, meaning the gender
dimension now contains all the female Nobel Prize winners.

nbviz.categoryDim.filter();
nbviz.genderDim.top(Infinity); // Array[47] of objects

In our Nobel-viz, these filter operations will be driven by the user
making selections from the topmost menu bar.

As well as returning the filtered subsets, Crossfilter can perform
grouping operations on the data. We use this to get the national
prize aggregates for the bar chart and map indicators.

nbviz.genderDim.filter(); // reset gender dimension
var countryGroup = nbviz.countryDim.group();
countryGroup.all();

// Out:
// [
// {key:"Argentina", value:5},
// {key:"Australia", value:9},
// {key:"Austria", value:14},
// ...]

Group takes an optional function as an argument, but the
default is generally what you want.

Returns all groups by key and value. Do not modify the
returned array.12

value is the total number of Nobel Prize winners for Argentina.

To create our Crossfilter filter and dimensions, we use the makeFil
terAndDimensions method, defined in nbviz_core.js. Example 15-8
shows the whole method. See “Testing JavaScript Apps” on page 525,
which uses makeFilterAndDimensions to demonstrate some Java‐
Script testing.

The JavaScript Engine | 395

https://github.com/square/crossfilter/wiki/API-Reference#group_all

Example 15-8. Making our Crossfilter filter and dimensions

 nbviz.makeFilterAndDimensions = function(winnersData){
 // ADD OUR FILTER AND CREATE CATEGORY DIMENSIONS
 nbviz.filter = crossfilter(winnersData);
 nbviz.countryDim = nbviz.filter.dimension(function(o){
 return o.country;
 });

 nbviz.categoryDim = nbviz.filter.dimension(function(o) {
 return o.category;
 });

 nbviz.genderDim = nbviz.filter.dimension(function(o) {
 return o.gender;
 });
 };

Running the Nobel Prize Visualization App
To run the Nobel-viz app, go to the api subdirectory of the root
nobel_viz directory and start the Python Eve RESTful API server on
port 5000 (by default):

$nobel_viz/api python server_eve.py
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
...

In the project’s root directory, set the Nobel-viz server running on
port 8000:

$nobel_viz python nobel_viz.py
 * Running on http://127.0.0.1:8000/ (Press CTRL+C to quit)
 ...

With these two servers running locally, navigate your browser to
http:localhost:8000 and you should see Figure 15-4.

In “Deploying Flask Apps” on page 531, we’ll see how to deploy a
Flask app on a production machine, using the Apache web server.

396 | Chapter 15: Building a Visualization

Figure 15-4. The finished Nobel-viz app

Summary
In this chapter, we sketched out how to implement the visualization
we imagined in Chapter 14. The backbone was assembled from
HTML, CSS, and JavaScript building blocks and the data feed to the
app and data flow within it described. In the following chapters,
we’ll see how the individual components of our Nobel-viz use the
data sent to them to create our interactive visualization. We’ll start
with a big chapter, which will introduce the fundamentals of D3
while showing how to build the bar chart component of our app.
This should set you up for the subsequent D3-focused chapters.

Building a Visualization | 397

CHAPTER 16

Introducing D3—The Story of a
Bar Chart

In Chapter 15 we imagined our Nobel Prize visualization by break‐
ing it into component elements. In this chapter, I will gently intro‐
duce you to D3 by showing you how to build the bar chart we need
(Figure 16-1).

Figure 16-1. This chapter’s target bar chart

D3 is much more than a charting library. It’s a library you use to
build charting libraries, among other things. So why am I introduc‐
ing you to D3 by way of that ultra-conventional visualization, the
bar chart? First, because there should be a little thrill in crafting one
from scratch for the first time, having total control over the look and
feel of the chart and being unconstrained by whatever prejudices a
particular charting library has. And second, because it just happens
to be a great way to cover the fundamental elements of D3, particu‐
larly data binding and the enter-exit-remove update pattern. If you

Introducing D3—The Story of a Bar Chart | 399

get those fundamentals in place, you’re well on your way to employ‐
ing the full power and expressivity D3 offers, and producing some‐
thing more novel than a bar chart.

We’ll be using some of the webdev covered in Chapter 4, particularly
the SVG graphics that are D3’s specialty (see “Scalable Vector
Graphics” on page 107). I recommend using the fantastic, purpose-
built D3 site blockbuilder.org to try out some of the code snippets.

Before we begin building the bar chart, let’s consider its elements.

Framing the Problem
A bar chart has three key components: the axes, legends and labels,
and, of course, the bars. As we’re producing a modern, interactive
bar chart component, we’ll need the axes and bars to transform in
response to user interaction—namely, filtering the set of prize win‐
ners via the top selectors (see Figure 14-1).

We’ll build the chart one step at a time, ending with D3 transitions,
which can make your D3 creations more engaging and attractive.
But first we’ll cover the basics of D3:

• Selecting DOM elements in your web page
• Getting and setting their attributes, properties, and styles
• Appending and inserting DOM elements

With these basics firmly in place, we’ll move on to the joys of data
binding, where D3 begins to flex its muscles.

Working with Selections
Selections are the backbone of D3. Using jQuery-like CSS selectors,
D3 can select and manipulate individual and grouped DOM ele‐
ments. All D3 chained operations begin by selecting a DOM ele‐
ment or set of elements using the select and selectAll methods.
select returns the first matching element; selectAll returns the set
of matching elements.

Figure 16-2 shows some example of D3 selections, using the select
and selectAll methods. These selections are used to change the
height attribute of one or more bars. The select method returns
the first rect (id barL) with class bar, whereas selectAll can

400

400 | Chapter 16: Introducing D3—The Story of a Bar Chart

http://blockbuilder.org/

return any combination of the rects depending on the query pro‐
vided.

Figure 16-2. Selecting elements and changing attributes: three rectan‐
gles are built with the initial HTML. Selections are then made and the
height attributes of one or more bar adjusted.

In addition to setting attributes (the named strings on the DOM ele‐
ments; e.g., id or class), D3 allows you to set elements’ CSS styles,
properties (e.g., whether a checkbox is checked), text, and HTML.

Working with Selections | 401

Figure 16-3 shows all the ways in which a DOM element can be
changed with D3. With these few methods, you can achieve pretty
much any look and feel you want.

Figure 16-3. Changing a DOM element with D3

Figure 16-4 shows how we can apply CSS styling by adding a class to
the element or directly setting a style. We first select the middle bar
using its id barM. The classed method is then used to apply a yellow
highlight (see the CSS) and the height attribute set to 50 px. The
style method is then used to apply a red fill to the bar directly.

Figure 16-4. Setting attributes and style

D3’s text method sets the text content of applicable DOM tags, such
as div, p, h* headers, and SVG text elements. To see the text
method in action, let’s create a little title placeholder with some
HTML:

<!DOCTYPE html>
<meta charset="utf-8">

<body>
 <h2>title holder</h2>
</body>

Figure 16-5 (before) shows the resulting browser page.

402 | Chapter 16: Introducing D3—The Story of a Bar Chart

Now let’s create a fancy-title CSS class with a large, bold font:

.fancy-title {
 font-size: 24px;
 font-weight: bold;
}

We can now use D3 to select the title header, add the fancy-title
class to it, and then set its text to My Bar Chart:

d3.select('#title#)
 .classed('fancy-title', true)
 .text('My Bar Chart');

Figure 16-5 (after) shows the resulting enlarged and emboldened
title.

Figure 16-5. Setting text and style with D3

In addition to setting the properties of DOM elements, we can use
selections to get those properties. Leaving out the second argument
to one of the methods listed in Figure 16-3 allows you to get infor‐
mation about the web page’s setup.

Figure 16-6 shows how to get the key properties from an SVG rec‐
tangle. As we’ll see, getting attributes like width and height from an
SVG element can be very useful for programmatic adaptation and
adjustment.

Figure 16-6. Getting a rect bar’s details

Figure 16-7 demonstrates the html and text getter methods. After
creating a little list (id silly-list), we use D3 to select it and get

Working with Selections | 403

various properties. The html method returns the HTML of the list’s
child tags, while the text method returns the text contained in
the list, with the HTML tags stripped. Note that for parent tags, the
formatting of any text returned is a little messy, but maybe good
enough for a string search or two.

Figure 16-7. Getting HTML and text from a list tag

So far we’ve been manipulating the attributes, styles, and properties
of existing DOM elements. This is a useful skill, but D3 comes into
its own when we start creating DOM elements programmatically
using its append and insert methods. Let’s look at these now.

Adding DOM Elements
We’ve seen how to select and manipulate the attributes, styles, and
properties of DOM elements. Now we’ll see how D3 allows us to
append and insert elements, programmatically adapting the DOM
tree.

We’ll start with a little HTML skeleton containing a nobel-bar
placeholder:

<!DOCTYPE html>
<meta charset="utf-8">
<link rel="stylesheet" href="style.css" />

<body>
 <div id='nobel-bar'></div>

 <script
 src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.16
 /d3.js">
 </script>

404 | Chapter 16: Introducing D3—The Story of a Bar Chart

 <script type="text/javascript" src="script.js"></script>
</body>

The script.js file is where we’ll add our bar chart’s JavaScript
code.

Let’s set the size of the nobel-bar element with a little CSS, placed in
style.css:

#nobel-bar {
 width: 600px;
 height: 400px;
}

Usually the first thing one does when creating a chart with D3 is to
provide an SVG frame for it. This involves appending an <svg> can‐
vas element to a div chartholder and then appending a <g> group to
the <svg> to hold specific chart elements (in our case, the chart
bars). This group has margins to accommodate axes, axes labels, and
titles.

Getting the Dimensions of an Element
It’s very common when programming in D3, or any other Java‐
Script visualization library, to require the width and height of an
SVG or HTML element to use as the basis for setting the size of
component elements. One way of doing this is to use D3’s style
component to grab the CSS dimensions and then use the parseInt
function to get an integer value:

/* CSS: #nobel-bar { width: 600px }; */

var width = parseInt(d3.select('#nobel-bar')

 .style('width'), 10);

The result of calling the style method is the string '600px',
which we can convert to the number 600 using the parseInt
function.

This method works pretty well as a rule, although the parseInt
feels a bit hacky, turning the string '600px' into the number 600.

Arguably, a better, more robust approach is to get the dimensions of
the bounding box of the HTML or SVG element in question. These

Adding DOM Elements | 405

give both the width, height, and relative position of the element,
using the node method to get the DOM element.

// For an HTML element, starting with the D3 +ele+ selection
var bRect = ele.node().getBoundingClientRect();
// e.g., bRect is {width: 600, height: 400, ... }
// For an SVG element use the getBBox method:
var bBox = eleSVG.node().getBBox();
// e.g., bBox is {width: 600, height: 400, x: 100, y: 100}

Conventionally, you will specify the margin of your chart in a mar
gin object and then use that and the CSS-specified width and height
of the chart container to derive the width and height of your chart
group. The required JavaScript looks like Example 16-1.

Example 16-1. Getting our bar chart’s dimensions

 var chartHolder = d3.select("#nobel-bar");

 var margin = {top:20, right:20, bottom:30, left:40};

 var boundingRect = chartHolder.node()
 .getBoundingClientRect();
 var width = boundingRect.width - margin.left - margin.right,
 height = boundingRect.height - margin.top - margin.bottom;

Gets the bounding rectangle for our Nobel bar chart’s panel,
using it to set the width and height of its bar container group.

With the width and height of our bar group in hand, we use D3 to
build our chart’s frame, appending the required <svg> and <g> tags
and specifying the size of the SVG canvas and translation of the bar
group:

d3.select('#nobel-bar').append("svg")
 .attr("width", width + margin.left + margin.right)
 .attr("height", height + margin.top + margin.bottom)
 .append("g").classed('chart', true)
 .attr("transform", "translate(" + margin.left + ","
 + margin.top + ")");

This changes the HTML of the nobel-bar content block:

...
 <div id="nobel-bar">
 <svg width="600" height="400">
 <g class="chart" transform="translate(40, 20)"></g>
 </svg>

406 | Chapter 16: Introducing D3—The Story of a Bar Chart

1 We’ll be dealing with axes, labels, and the like later in the chapter when we put D3 into
top gear and start binding data.

 </div>
...

The resulting SVG framework is shown in Figure 16-8. The <svg>
element’s width and height are the sum of its child group and the
surrounding margins. The child group is offset using transform to
translate it margin.left pixels to the right and margin.top pixels
down (by SVG convention, in the positive y direction).

Figure 16-8. Building our bar chart’s frame

With our frame in place, let’s use append to add a few bars. We’ll use
a little dummy data: an array of objects with the top slice of Nobel
Prize–winning countries by prize number.

var nobelData = [
 {key:'United States', value:336},
 {key:'United Kingdom', value:98},
 {key:'Germany', value:79},
 {key:'France', value:60},
 {key:'Sweden', value:29},
 {key:'Switzerland', value:23},
 {key:'Japan', value:21},
 {key:'Russia', value:19},
 {key:'Netherlands', value:17},
 {key:'Austria', value:14}
];

To build a crude bar chart,1 we can iterate through the nobelData
array, appending a bar to the chart group as we go. Example 16-2
demonstrates this. After building a basic frame for our chart, we
iterate through the nobelData array, using the value fields to set the

Adding DOM Elements | 407

bar’s height and y-position. Figure 16-9 shows how the object values
are used to append bars to our chart group. Note that because SVG
uses a downward y-axis, you have to displace the bars by the height
of the bar chart minus that of the bar in order to put the bar chart
the right way up. As we’ll see later, by using D3’s scales, we can limit
such geometric bookkeeping.

Example 16-2. Building a crude bar chart with append

var buildCrudeBarchart = function() {

 var chartHolder = d3.select("#nobel-bar");

 var margin = {top:20, right:20, bottom:30, left:40};
 var boundingRect = chartHolder.node().getBoundingClientRect();
 var width = boundingRect.width - margin.left - margin.right,
 height = boundingRect.height - margin.top - margin.bottom;
 var barWidth = width/nobelData.length;

 var svg = d3.select('#nobel-bar').append("svg")
 .attr("width", width + margin.left + margin.right)
 .attr("height", height + margin.top + margin.bottom)
 .append("g").classed('chart', true)
 .attr("transform", "translate(" + margin.left + ","
 + margin.top + ")");

 nobelData.forEach(function(d, i) {
 svg.append('rect').classed('bar', true)
 .attr('height', d.value)
 .attr('width', barWidth)
 .attr('y', height-d.value)
 .attr('x', i*(barWidth));
 });
};

Iterates through each of the objects in nobelData, the forEach
method providing object and array index to an anonymous
function.

408 | Chapter 16: Introducing D3—The Story of a Bar Chart

Figure 16-9. Programming a basic bar chart with D3

The other way in which D3 can add elements to the DOM tree is
with its insert method. insert works like append but adds a sec‐
ond selector argument to allow you to place elements before a par‐
ticular position in an sequence of tags, such as at the beginning of an
ordered list. Figure 16-10 demonstrates the use of insert: list items
in the silly-list are selected just like append and then a second
argument (e.g., ':first-child') specifies the element to insert
before.

Figure 16-10. Using D3’s insert method to add list items

For SVG elements, positioned directly within their parent group
using x and y coordinates, insert might seem redundant. But, as

Introducing D3—The Story of a Bar Chart | 409

discussed in “Layering and Transparency” on page 120, DOM
ordering is important in SVG as elements are layered, meaning that
the last element in the DOM tree overlays any previous. We’ll see an
example of this in Chapter 18 where we have a grid overlay (or gra
ticule) for our world map. We want this grid to be drawn above all
other map elements so use insert to place those elements before it.

Our crude bar chart in Figure 16-9 is crying out for a little refine‐
ment. Let’s see how we can improve things, first with D3’s powerful
scale objects and then with D3’s biggest idea, data binding.

Leveraging D3
In Example 16-2, we built a basic, no-frills bar chart with D3. This
chart had a number of problems. First, looping through the data
array is a bit clunky. What if we wanted to adapt the dataset for our
chart? We’d need some way of adding or removing bars in response
and then updating the resulting bars with the new data and redraw‐
ing everything. We’d also need to keep scaling the bar dimensions in
x and y to reflect the different number of bars and a different maxi‐
mum bar value. That’s quite a lot of bookkeeping already and things
could get messy fast. Also, where do we keep the changing datasets?
Every data-driven change to our chart would require passing the
dataset around and then constructing a loop to iterate over ele‐
ments. It feels as if the data exists outside the chained D3 workflow
when it really needs to be integral to it.

The solution to elegantly integrating our dataset with D3 lies in the
concept of data binding, D3’s biggest idea. The scaling problems are
sorted by one of D3’s most useful utility libraries: scale. We’ll take a
look at these now and then unleash the power of D3 with some data
binding.

Measuring Up with D3’s Scales
The fundamental idea behind D3’s scales is a mapping from an input
domain to an output range. This simple procedure can remove a lot
of the persnickety aspects of building charts, visualizations, and the
like. As you get more comfortable with scales, you’ll find more and
more situations where you can apply them. Mastering them is a key
component to relaxed, effortless D3.

410 | Chapter 16: Introducing D3—The Story of a Bar Chart

2 See D3’s GitHub page for a comprehensive list.

D3 provides a lot of scales, dividing them into three main categories:
quantitative, ordinal, and time2 scales. There are exotic mappings to
suit most conceivable situations, but you’ll probably find yourself
using the linear and ordinal scales much of the time, at least while
you win your D3 spurs.

In use, D3 scales can appear slightly strange because they are part
object, part function. What this means is that after creating your
scale, you can call various methods on it to set its properties (e.g.,
domain to set its domain), but you can also call it as a function with
a domain argument to return a range value. The following example
should make the distinction clear:

var scale = d3.scale.linear(); // create a linear scale
scale.domain([0, 1]).range([0, 100]);
scale(0.5) // returns 50

We use the scale’s domain and range methods to map from 0 →
1 to 0 → 100.

We call the scale like a function with a domain argument of 0.5,
returning a range value of 50.

Let’s look at the two main D3 scales, the quantitative and the ordi‐
nal, showing how we use them to build our bar chart as we go.

Quantitative Scales
A D3 quantitative scale you’ll usually employ when building line-
charts, bar charts, scatter plots, and the like is linear, mapping a
continuous domain to a continuous range. For example, we want
our bar heights to be a linear function of the nobelData values. The
range of values to be mapped to is between the maximum and mini‐
mum height of the bars in pixels (400 px to 0 px) and the domain to
be mapped from is between the smallest conceivable value (0) and,
in our case, the largest value in the array (336 US winners). In the
following code, we first use D3’s max method to get the largest value
in our nobelData array, using that to specify the end of our domain:

var maxWinners = d3.max(nobelData, function(d){
 return +d.value;
 });

Introducing D3—The Story of a Bar Chart | 411

https://github.com/mbostock/d3/wiki/Scales

3 See the D3 docs for full details.

var yScale = d3.scale.linear()
 .domain([0, maxWinners]) /* [0, 336] */
 .range([height, 0]);

One little trick to note is that our range decreases from its maxi‐
mum. This is because we want to use it to specify a positive displace‐
ment along the SVG downward y-axis in order to make the bar
chart’s y-axis point upward (i.e., the smaller the bar height, the
larger the y displacement required). Conversely, you can see that the
largest bar (the US winners tally) isn’t displaced at all (see
Figure 16-11).

Figure 16-11. Using D3’s linear scale to fix the domain and range of
our bar chart’s y-axis

We’re using the simplest possible linear scale for our bar chart’s y-
axis, mapping from one numeric range to another, but D3’s linear
scales can do a lot more. The key to understanding this is D3’s inter
polate method.3 This takes two values and returns an interpola
tor between them. So, for the range of our yScale in Figure 16-11,
interpolate returns a numeric interpolator for the values 400
and 0:

var numInt = d3.interpolate(400, 0);

numInt(0); // 400
numInt(0.5); // 200
numInt(1); // 0

Interpolators have a default domain of [0,1].

412 | Chapter 16: Introducing D3—The Story of a Bar Chart

https://github.com/mbostock/d3/wiki/Transitions#d3_interpolate

4 D3 will truncate whichever is bigger.
5 D3 has many built-in colormaps and sophisticated color handling with RGB, HCL, etc.

We’ll see a few of these in action in the coming chapters.

The interpolate method can deal with more than just numbers.
Strings, color codes, and even objects are handled sensibly. You can
also specify more than two numbers for your domain array—just
make sure that domain and range arrays are the same size.4 We can
combine these two facts to create a useful colormap:5

var color = d3.scale.linear()
 .domain([-1, 0, 1])
 .range(["red", "green", "blue"]);

color(0) // "#008000" green's hex code
color(0.5) // "004080" slate blue

D3’s linear scales have a lot of useful utility methods and rich func‐
tionality. The numeric maps will probably be your workhorse scale,
but I recommend reading the D3 docs to fully appreciate how flexi‐
ble the linear scales are. On that web page, you’ll find D3’s other
quantitative scales, to suit almost every quantitative occasion:

• Power scales, similar to linear but with exponential transform
(e.g., sqrt)

• Log scales, similar to linear but with logarithmic transform
• Quantize scales, a variant of linear with a discrete range; that is,

although the input is continuous, the output is divided into seg‐
ments or buckets (e.g., [1, 2, 3, 4, 5])

• Quantile scales, often used for color palettes, are similar to
quantize scales but have discrete or bucketed domains as well as
ranges

• Identity scales, linear with the same domain and range (fairly
esoteric)

Quantitative scales are great for manipulating continuously valued
quantities, but often we want to get values based on a discrete
domain (e.g., names or categories). D3 has a specialized set of ordi‐
nal scales to meet this need.

Introducing D3—The Story of a Bar Chart | 413

http://bit.ly/1UAO0lI

Ordinal Scales
Ordinal scales take an array of values as their domain and map these
to discrete or continuous ranges, producing a single mapped value
for each. To explicitly create a one-to-one mapping, we use the
scale’s range method:

var oScale = d3.scale.ordinal()
 .domain(['a', 'b', 'c', 'd', 'e'])
 .range([1, 2, 3, 4, 5]);

oScale('c'); // 3

In the case of our bar chart, we want to map an array of indices to a
continuous range, to provide our bars’ x-coordinates. For this, we
can use the rangeBands or the rangeRoundBands methods, the latter
snapping output values to individual pixels. Here, we use rangeR
oundBands to map an array of numbers to a continuous range:

var oScale = d3.scale.ordinal()
 .domain([1, 2, 3, 4, 5])
 .rangeRoundBands([0, 400]);

oScale(3) // 160
oScale(5) // 320

In building our original crude bar chart (Example 16-2), we used a
barWidth variable to size the bars. Implementing padding between
the bars would have required a padding variable and necessary
adjustments to barWidth and the bar positions. With our new ordi‐
nal scale, we get these things for free, removing the fiddly bookkeep‐
ing. Calling the xScale’s rangeBand (note the singular form)
method provides the calculated bar widths. We can also provide the
rangeBands method with a second argument, specifying the pad‐
ding between the bars as a fraction of the space occupied by each
bar. The rangeBand value is adjusted accordingly. Here are some
examples of this in action:

var oScale = d3.scale.ordinal()
 .domain([1, 2]);

oScale.rangeRoundBands([0, 100]);
oScale(2); // 50
oScale.rangeBand(); // 50

oScale.rangeRoundBands([0, 100], 0.1); // pBpBp
oScale(1); // 5

414 | Chapter 16: Introducing D3—The Story of a Bar Chart

oScale(2); // 52
oScale.rangeBand(); // 42, the padded bar width

Stores the scale with a fixed domain; useful if we anticipate the
range changing.

rangeRoundBands snaps (rounds) the output values to integers.

We specify a padding (p) factor of 0.1 * allocated bar(B)-space.

Figure 16-12 shows our bar chart’s ordinal x-scale with a padding
factor of 0.1. The continuous range is 600 (pixels), which is the
width of the bar chart, and the domain is an array of integers repre‐
senting the individual bars. As shown, providing xScale with a bar’s
index number returns its position on the x-axis.

Figure 16-12. Setting the domain and range of our bar chart’s x-scale,
using a padding factor of 0.1

Armed with our D3 scales, let’s turn to D3’s central concept, binding
data to the DOM in order to drive changes to it.

Unleashing the Power of D3 with Data
Binding
D3 stands for Data-Driven Documents, and up to now we haven’t
really been driving with our data. In order to unleash D3, we need to
embrace its big idea, which is binding the data in our dataset to its
respective DOM elements and updating the web page (document)
based on this integration. This small step of binding data to the
DOM enables a huge amount of functionality when combined with
the most powerful D3 methods, enter and exit. With enter, we
can return any data that is not bound to a DOM element and use it

Unleashing the Power of D3 with Data Binding | 415

to create a new one (to which it is then bound). exit, the counter‐
part of enter, allows us to find any DOM elements that are
unbound to data and, for example, remove them (with the remove()
method). Working in conjunction, enter and exit make updating a
bar chart a cinch and are almost certainly at work in the cooler D3
demos you’ve seen.

In order to demonstrate D3’s data binding, let’s start with our bar-
less chart, with SVG canvas and chart group in place:

...
 <div id="nobel-bar">
 <svg width="600" height="400">
 <g class="chart" transform="translate(40, 20)"></g>
 </svg>
 </div>
...

In order to bind data with D3, we first need some data in the right
form. Generally that will be an array of objects, like our bar chart’s
nobelData:

var nobelData = [
 {key:'United States', value:336},
 {key:'United Kingdom', value:98},
 {key:'Germany', value:79},
 ...
]

With this data in hand, binding it to the DOM is easy. We just make
a standard D3 selection and then use the data method to bind the
data to it. We’ll store the result in a bars variable:

var svg = d3.select('#nobel-bar .chart');

var bars = svg.selectAll('.bar')
 .data(nobelData);

We now come to a slightly counterintuitive aspect of D3’s data
method. Our first select returned the chart group in our nobel-
bar SVG canvas, but the second selectAll returned all elements
with class bars, of which there are none. If there are no bars, what
exactly are we binding the data to? The answer is that behind the
scenes, D3 is keeping the books and that the bars object returned by
data knows which DOM elements have been bound to the nobel

416 | Chapter 16: Introducing D3—The Story of a Bar Chart

Data and, just as crucially, which haven’t. We’ll now see how to make
use of this fact using the fundamental enter method.

The enter Method
D3’s enter method (and its sibling, exit) is both the basis for D3’s
superb power and expressiveness and also the root of much confu‐
sion. It’s worth coming to grips with it at a low level if you really
want your D3 skills to grow. Let’s introduce it now, with a very sim‐
ple and slow demonstration.

We’ll start with a canonically simple little demonstration, adding a
bar rectangle for each member of our Nobel Prize data. We’ll use the
first six Nobel Prize–winning countries as our bound data:

var nobelData = [
 {key:'United States', value:200},
 {key:'United Kingdom', value:80},
 {key:'France', value:47},
 {key:'Switzerland', value:23},
 {key:'Japan', value:21},
 {key:'Austria', value:12}
];

With our dataset in hand, let’s first use D3 to grab the chart group,
saving it to an svg variable. We’ll use that to make a selection of all
elements of class bar (none at the moment):

var svg = d3.select('#nobel-bar .chart');

var bars = svg.selectAll('.bar')
 .data(nobelData);

Now although the bars selection is empty, behind the scenes D3 has
kept a record of the data we’ve just bound to it. At this point, we can
use that fact and the enter method to create a few bars with our
data. Calling enter on our bars selection returns a subselection of all
the data (nobelData, in this case) that was not bound to a bar. Since
there were no bars in the original selection (our chart being empty),
all the data is unbound, so enter returns an enter election (essen‐
tially placeholder nodes for all the unbound data) of size six:

bars = bars.enter(); # returns six placeholder nodes

We can use the placeholder nodes in bars to create some DOM ele‐
ments—in our case, a few bars. We won’t bother with trying to put
them the right way up (the y-axis being down from the top of the

The enter Method | 417

https://github.com/mbostock/d3/wiki/Selections#enter

screen by convention), but we will use the data values and indexes to
set the position and height of the bars:

bars.append('rect')
 .classed('bar', true)
 .attr('width', 10)
 .attr('height', function(d){return d.value;})
 .attr('x', function(d, i) { return i * 12; });

If you provide a callback function to D3’s setter methods (attr,
style, etc.), then the first and second arguments provided are
the value of the individual data object (e.g., d == {key: 'Uni
ted States', value: 200}) and its index (i).

Using the callback functions to set height and the x position (allow‐
ing a padding of 2 px) of the bars, calling append on our six node
selection produces Figure 16-13.

Figure 16-13. Producing some bars with D3’s enter method

I’d encourage you generally to use Chrome’s (or equivalent) Ele‐
ments tab to investigate the HTML your D3 is producing. Investi‐
gating our mini–bar chart with Elements shows Figure 16-14.

418 | Chapter 16: Introducing D3—The Story of a Bar Chart

Figure 16-14. Using the Elements tab to see the HTML generated by
enter and append

So we’ve seen what happens when we call enter on an empty selec‐
tion. But what happens when we already have a few bars, which we
would have in an interactive chart with a user-driven, changing
dataset?

Let’s add a couple of bar class rectangles to our starting HTML:

<div id="nobel-bar">
 <svg width="600" height="400">
 <g class="chart" transform="translate(40, 20)">
 <rect class='bar'></rect>
 <rect class='bar'></rect>
 </g>
 </svg>
</div>

If we now perform the same data binding and entering as before, on
calling data on our selection, the two placeholder rectangles bind to
the first two members of our nobelData array (i.e., [{key: 'United
States', value: 200}, {key: 'United Kingdom', value:80}]).
This means that enter, which returns only unbound data placehold‐
ers, now returns only four placeholders, associated with the last four
elements of the nobelData array:

Introducing D3—The Story of a Bar Chart | 419

var svg = d3.select('#nobel-bar .chart');

var bars = svg.selectAll('.bar')
 .data(nobelData);

bars = bars.enter(); # return four placeholder nodes

If we now call append on the entered bars, as before, we get the
result shown in Figure 16-15, showing the last four bars (note that
they preserve their index i, used to set their x positions) rendered.

Figure 16-15. Calling enter and append with existing bars

Figure 16-16 shows the HTML generated for the last four bars. As
we’ll see, the data from the first two elements is now bound to the
two dummy nodes we added to the initial bar group. We just haven’t
used it yet to adjust those rectangles’ attributes. Updating old bars
with new data is the one of the key elements of the update pattern
we’ll see shortly.

Figure 16-16. Using the Elements tab to see the HTML generated by
enter and append on a partial selection

420 | Chapter 16: Introducing D3—The Story of a Bar Chart

To emphasize, coming to grips with enter and exit (and remove) is
vital to healthy progress with D3. Play around a bit, inspect the
HTML you’re producing, enter a bit of data, and generally get a bit
messy, learning the ins and outs. Let’s have a little look at accessing
the bound data before moving on to the D3’s nexus, the update
pattern.

Accessing the Bound Data
A good way to see what’s happening to the DOM is to use your
browser’s HTML inspector and console to track D3’s changes. In
Figure 16-13, we use Chrome’s console to look at the rect element
representing the first bar in Figure 16-15, before data has been
bound and after the nobelData has been bound to the bars using the
data method. As you can see, D3 has added a __data__ object to the
rect element with which to store its bound data—in this case, the
first member of our nobelData list. The __data__ object is used by
D3’s internal bookkeeping and, fundamentally, the data in it made
available to functions supplied to update methods such as attr.

Figure 16-17. Using the Chrome console to show the addition of a
__data__ object after data binding using D3’s data method

Let’s look at a little example of using the data in an element’s
__data__ object to set its name attribute. The name attribute can be
useful for making specific D3 selections. For example, if the user
selects a particular country, we can now use D3 to get all its named
components and adjust their style if needed. We’ll use the bar with

Introducing D3—The Story of a Bar Chart | 421

bound data in Figure 16-17 and set the name using the key property
of its bound data:

var bar = d3.select('#nobel-bar .bar');

bar.attr('name', function(d, i){

 var sane_key = d.key.replace(/ /g, '_');

 console.log('__data__ is: ' + JSON.stringify(d)
 + ', index is ' + i)

 return 'bar__' + sane_key;
 });
// console out:
// __data__ is: {"key":"United States","value":336}, index is 0

All D3 setter methods can take a function as their second argu‐
ment. This function receives the data (d) bound to the selected
element and its position in the data array (i).

We use a regular expression (regex) to replace all spaces in the
key with underscores (e.g., United States → United_States).

This will set the bar’s id to 'bar__United_States'.

All the setter methods listed in Figure 16-3 (attr, style, text, etc.)
can take a function as a second argument, which will receive data
bound to the element and the element’s array index. The return of
this function is used to set the value of the property. As we’ll see,
with interactive visualizations’ changes to the visualized dataset will
be reflected when we bind the new data and then use these func‐
tional setters to adapt attributes, styles, and properties accordingly.

Now that we’ve seen how bind data objects to DOM elements and
use that data to add and adapt elements, let’s look at how to update
our visualizations as our data changes. The update pattern we’ll
learn is the core to using D3 effectively, and it or a close variant will
be employed in pretty much all the cool D3 demos you’ve seen.

The Update Pattern
The previous section showed how we can bind our data to the
DOM, use it to append or insert elements, and use data-driven func‐
tions to change attributes of the elements. We now want to put these

422 | Chapter 16: Introducing D3—The Story of a Bar Chart

6 See Mike Bostock’s demonstration of the general update pattern at bl.ocks.org.

concepts together to fulfill our goal of creating charts or visualiza‐
tions that can be updated with new data, allowing for user-driven
changes and the full scope of interactivity. To do this, we’ll employ
an update pattern that makes use of one of D3’s core concepts, the
data-join. With the enter method, we’ve already seen one half of the
data-join methods at work. Now we’ll see how it works in conjunc‐
tion with its sibling exit to create the update pattern.6

Although you may anticipate building one-off
charts, with a single data-binding process, it’s
good to get into the habit of asking yourself
“What if I need to change the data dynami‐
cally?” If the answer is not immediately obvious,
you have probably implemented a bad D3
design. Catching yourself in the act means you
can do a little code audit and make the necessary
changes before things start to deteriorate. It’s
good to kick yourself out of this habit, but also,
because D3 is somewhat of a craft skill, con‐
stantly reaffirming that best practice will pay off
when you need it.

Figure 16-18 shows a D3 update pattern.

1. First we bind the nobelData to a selection of bars (of class bar)
containing two existing bars (B0 and B1). The first two data
objects (O1 and O2) are bound to their respective bars, leaving
the rest of the objects unbound.

2. Using enter on the bars update selector returns an array with
placeholders for all the unbound data objects. These are then
used to append new bars to the bar group.

3. We then use chained attribute setters on all the bars in the bars
update selector, including the bars we just appended (now
freshly bound to their data). We use our x and y scales to get the
correct dimensions and positions for the bars. Note that the
code to update the scales’ domains given the new data is not
shown but will be shortly.

The Update Pattern | 423

https://bl.ocks.org/mbostock/3808218
http://bost.ocks.org/mike/join/

4. Finally we use enter’s counterpart in the data-join, exit, to
return any bar elements that are not bound to data (in this case
an empty list). We then remove any of these.

Figure 16-18. D3 update pattern

The update pattern just described is found in
some shape or other in almost all interactive D3
charts, and getting your head around it is funda‐
mental to “getting” D3. In fact, I think that if you
“get” the update pattern, you “get” D3, so spend
some time thinking about it. I’d suggest playing
around at Blockbuilder (with many thousands of
update pattern examples available) and going to
the huge collection of D3 examples at http://
bl.ocks.org/mbostock. Pick an example and see if
you can locate and understand its update pat‐
tern.

424 | Chapter 16: Introducing D3—The Story of a Bar Chart

http://blockbuilder.org
http://bl.ocks.org/mbostock
http://bl.ocks.org/mbostock

Figure 16-19 shows the update pattern with removal of some
unbound dataless bars. Whereas in Figure 16-18 there were more
data objects than bars, here the data-join (1) has fewer objects than
bars, leaving two bars (B2 and B3) unbound. Entering the data (2)
results in an empty array, with no objects unbound to bars. In (3) we
update the first two bars with their new data. Note that the bar
widths, specified by xScale.rangeBand(), will change as we update
our ordinal xScale’s domain from [0, 1, 2, 3] to [0, 1], to reflect the
change in our size of our dataset. In Figure 16-18, exiting the bars
resulted in an empty list, there being no unbound bars. Here, bars
B2 and B3 have no data associated with them and are returned by
the exit method. A subsequent remove call removes them from the
DOM tree, leaving our updated bar chart clutter-free.

Figure 16-19. D3 update pattern with removal

Example 16-3 shows the complete code for our no-frills bar chart
with the update pattern incorporated. Note that the chart details that

The Update Pattern | 425

are independent of the data (our nobelData array) are specified out‐
side of the update function (e.g., the scale ranges), specified by the
height and width in pixels of our bar chart, in turn established by
the CSS-defined width and height of the #nobel-bar container and
the margin variable. Any aspects of the chart that might change with
new data are shifted into the update function. So the scale domains,
specified by the length of the data array and its maximum value, are
set separately from the ranges and updated every time the data
changes.

Note also that, once the charts framework is in place, we are only
interested in the update method and supplying it with any new data.
As we’ll see, this allows us to harness JavaScript’s closure and create
safe, reusable chart objects, hiding the chart’s innards from the user
and reducing possible code conflicts.

Example 16-3. Making a bar chart with the update pattern

// GETTING THE CHART DIMENSIONS
var chartHolder = d3.select("#nobel-bar");
var margin = {top:20, right:20, bottom:30, left:40};
var boundingRect = chartHolder.node().getBoundingClientRect();
var width = boundingRect.width - margin.left - margin.right,
height = boundingRect.height - margin.top - margin.bottom;
// SCALES WITH RANGES
var xScale = d3.scale.ordinal()
 .rangeBands([0, width], 0.1);

var yScale = d3.scale.linear()
 .rangeRound([height, 0]);
// CHART-HOLDER GROUP
var svg = d3.select('#nobel-bar').append("svg")
 .attr("width", width + margin.left + margin.right)
 .attr("height", height + margin.top + margin.bottom)
 .append("g").classed('chart', true)
 .attr("transform", "translate(" +
 margin.left + "," + margin.top + ")");
// OUR UPDATE FUNCTION
var update = function(data){
 // UPDATE SCALE DOMAINS FOR CHANGED DATA
 xScale.domain(d3.range(data.length));
 yScale.domain([0, d3.max(data.map(function(d) {
 return d.value;
 }))]);
 // JOIN DATA TO BAR-GROUP
 var bars = svg.selectAll('.bar')
 .data(data);

426 | Chapter 16: Introducing D3—The Story of a Bar Chart

7 Axes follow a similar pattern to that proposed by Mike Bostock in Towards Reusable
Charts, using the JavaScript objects’ call method to build HTML on the selected DOM
element(s).

 // APPEND BARS FOR UNBOUND DATA
 bars.enter()
 .append('rect').classed('bar', true);
 // UPDATE ALL BARS WITH BOUND DATA
 bars.attr('height', function(d, i){
 return height-yScale(d.value); })
 .attr('width', xScale.rangeBand())
 .attr('y', function(d) {
 return yScale(d.value);
 })
 .attr('x', function(d, i) {
 return xScale(i);
 });
 // REMOVE ANY BARS WITHOUT BOUND DATA
 bars.exit().remove();
};

Our x-scale domain is just [0, 1, … n-1], where n is the length of
our dataset. d3.range is a handy method, which takes an input
integer n and produces an array [0, … n–1].

Use D3’s max method to get the max value in our dataset.

Axes and Labels
Now that we have a working update pattern, we will add the axes
and axes labels that any self-respecting bar chart needs.

D3 doesn’t offer a lot in the way of high-level chart elements,
encouraging you to roll your own. But it does provide a convenient
axis object, which takes the sting out of having to craft the SVG ele‐
ments yourself. It’s easy to use and, as you would expect, plays nicely
with our data update patterns, allowing for axes ticks and labels that
change in response to the data presented.

D3 Axes
D3 axes can be confusing at first, feeling just a little bit magical. It’s
best to think of them as a plugin7 that generates the correct axis
HTML (lines, ticks, tick labels, etc.) for you and which can respond

Axes and Labels | 427

https://bost.ocks.org/mike/chart/
https://bost.ocks.org/mike/chart/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call

sensibly to changes in data (i.e., if you change the range of your
scales, the axes can change in response using nice, smooth transi‐
tions that look pretty cool).

Generally with a D3 axis, you will create an SVG group to hold it
and then call the axis on it, having set the scale it will represent.
During the call, the axis object will stamp the correct HTML on
the DOM. So, as a simple demo, the following page describes a sim‐
ple chart setup with an SVG x-axis group and a D3 axis. Calling
the axis on the axis group generates the HTML lines and text
needed for an axis.

<!DOCTYPE html>
<meta charset="utf-8">
<script
 src="https://cdnjs.cloudflare.com/ajax/
 libs/d3/3.5.5/d3.min.js">
</script>
<style> svg{width:600px; height:400px} </style>

<body>
 <svg>
 <g id='chart' transform='translate(20,20)'>
 <g id='x-axis'></g>
 </g>
 </svg>
 <script>
 var scale = d3.scale.linear()

 .domain([0, 10]).range([0,400]);

 var xaxis = d3.svg.axis().scale(scale);

 d3.select('#x-axis').call(xaxis);
 </script>
</body>

Creates a scale with a domain of 0 to 10 and a range of 400
(pixels).

Creates a D3 axis, using the scale just defined.

Calling the D3 axis on our x-axis group creates the axis
HTML branch shown in Figure 16-21, which looks like
Figure 16-20.

Figure 16-20. A simple D3 axis

428 | Chapter 16: Introducing D3—The Story of a Bar Chart

Figure 16-21. The HTML branch created by a D3 axis instance

Using the call method on a selection is a common D3 technique to
create plugins such as tooltips and brushes. There are loads of
examples on bl.ocks.org like this one by Charl Botha. I wrote a
little blog post about extending the technique. The main take-home
is that it’s not magic and it’s certainly important that you under‐
stand the basics of what’s happening during that call method.

In order to define our x and y axes, we need to know what ranges
and domains we want our axes to represent. In our case, it’s the
same one as the ranges and domains of our x and y scales, so we
supply these to the axes’ scale method. D3 axes also allow you to
specify their orientation, which will fix the relative position of ticks
and tick labels. With our bar chart, we want the x-axis on the bot‐
tom and the y-axis on the left. Our ordinal x-axis will have a label
for each bar, but with our y-axis, the choice of tick numbers is arbi‐
trary. Ten seems like a reasonable number, so we set that using the
ticks method. The following code shows how we declare our bar
chart’s axes:

var xAxis = d3.svg.axis()
 .scale(xScale)
 .orient("bottom");

var yAxis = d3.svg.axis()
 .scale(yScale)
 .orient('left')
 .ticks(10)
 .tickFormat(function(d) {
 if(nbviz.valuePerCapita){
 return d.toExponential();
 }
 return d;
 });

Axes and Labels | 429

http://bl.ocks.org/cpbotha/5073718
http://kyrandale.com/blog/building-d3-plugin/

We want the format of our tick labels to change with our chosen
metric, per capita or absolute. Per capita produces a very small
number that is best represented in exponential form (e.g.,
0.000005 → 5e-6). The tickFormat method allows you to take
the data value at each tick and return the desired tick string.

We’ll also need a little bit of CSS to style the axes correctly, removing
the default fill, setting the stroke color to black, and making the
shape render crisply. We’ll also specify the font size and family while
we’re at it:

/* style.css */
.axis { font: 10px sans-serif; }
.axis path, .axis line {
 fill: none;
 stroke: #000;
 shape-rendering: crispEdges;
}

Up to now, we’ve been using a numerical domain as placeholder for
our ordinal x-axis (see Example 16-3). Now we need it to contain
the bar labels, which will be used to make the x-ticks of our chart.
The country data supplied to our update method is of the form:

[
 {
 code: "USA", // Three-digit country code
 key: "United States",
 population: 319259000,
 value: 336
 },
 // ... 56 more countries
]

We want to use those three-digit country codes as handy x-labels,
which means updating the domain of our ordinal x-scale. The fol‐
lowing code uses the data array’s map method to return an array of
country codes, which are used to set the domain of our x-scale to
[“USA”, “GBR”, “DEU”, …]:

xScale.domain(data.map(function(d) { return d.code; }));

Now that we have our axis generators, we need a couple of SVG
groups to hold the axes they produce. Let’s add these to our main
svg selector as groups with sensible class names:

svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0," + height + ")");

430 | Chapter 16: Introducing D3—The Story of a Bar Chart

svg.append("g")
 .attr("class", "y axis");

By SVG’s convention, y is measured from the top down, so we
want our bottom-oriented x-axis translated from the chart’s top
by height pixels.

Our bar chart’s axes have fixed ranges (the width and height of the
chart), but their domains will change as the user filters the dataset.
For example, the number of (country) bars will be reduced if the
user filters the data by Economics category: this will change the
domain of the ordinal x-scale (number of bars) and the quantitative
y-scale (maximum number of winners). We want the displayed axes
to change with these changing domains, with a nice transition for
good measure.

Example 16-4 shows how the axes are updated. First we update our
scale domains using the new data (A). These new scale domains are
reflected when the axes generators (which are linked to them) are
called on their respective axis groups.

Example 16-4. Updating our bar chart’s axes

update = function(data) {
 // A. Update scale domains with new data
 xScale.domain(data.map(function(d) { return d.code; }));
 yScale.domain([0, d3.max(data, function(d){
 return +d.value; })]);
 // B. Use the axes generators with the new scale domains
 svg.select('.x.axis')
 .call(xAxis)
 .selectAll("text")
 .style("text-anchor", "end")
 .attr("dx", "-.8em")
 .attr("dy", ".15em")
 .attr("transform", "rotate(-65)");

 svg.select('.y.axis')
 .call(yAxis);
 // ...

Calling the D3 axis on our x-axis group element builds all the
necessary axis SVG in it, including ticks and tick labels. D3 axis
uses an internal update pattern to enable transitions to newly
bound data.

Axes and Labels | 431

After creating the x-axis, we perform some SVG manipulations
of the text labels generated. First we select the text elements of
the axis, the tick labels. We then place their text anchors at the
end of the element and shift their position a bit. This is because
the text is rotated about its anchor and we want to rotate about
the end of the country labels, now positioned under the tick
lines. The result of our manipulations is shown in Figure 16-22.
Note that without rotating our labels, they would merge into
one another.

Figure 16-22. Reoriented tick labels on the x-axis

Now that we have our working axes, let’s add a little label to the x-
axis and then see how the bar chart copes with our real data:

var X_PADDING_LEFT = 20;
//...
var xScale = d3.scale.ordinal()
 .rangeBands([X_PADDING_LEFT, width], 0.1);
//...
svg.append("g")
 .attr("class", "y axis")
 .append("text")
 .attr('id', 'y-axis-label')
 .attr("transform", "rotate(-90)")
 .attr("y", 6)
 .attr("dy", ".71em")
 .style("text-anchor", "end")
 .text('Number of winners');

A left padding constant, in pixels, to make way for the y-axis
label.

Rotates the text anticlockwise to the upright position.

dy is a relative coordinate [relative to the y coordinate just speci‐
fied (6)]. By using the em unit (relative to font size), we can
make handy adjustments to the text margin and baseline. See
the D3 docs for a full explanation and examples.

432 | Chapter 16: Introducing D3—The Story of a Bar Chart

https://github.com/mbostock/d3/wiki/SVG-Shapes#svg_text

Figure 16-23 shows the result of filtering our Nobel Prize winners’
dataset for Chemistry winners, using our category selector filter.
The bar widths increase to reflect the reduced number of countries,
and both axes adapt to the new dataset.

Figure 16-23. The Nobel Prize bar chart before and after we apply the
category filter for Chemistry winners

We now have a working bar chart, using the update pattern to adjust
itself as the user-driven dataset changes. But although it’s functional,
the transition in response to data change is visually stark, even jar‐
ring. One way to make the change much more engaging and even
informative would be to have the chart update continuously over a
short time period, with preserved country bars moving from their
old to new position while simultaneously adapting their height and
width. Such continuous transitions really add life to a visualization
and are seen in many of the most impressive D3 pieces. The good
news is that transitions are tightly integrated into D3’s workflow,
which means you can achieve these cool visual effects for the cost of
a few lines of code.

Axes and Labels | 433

8 For example, when we change our measurement of Nobel Prize wins by country from
absolute to per capita, the large amount of movement displayed as the country bars
change their order emphasizes the difference between the two metrics.

Transitions
As it stands, our bar chart is perfectly functional. It responds to data
changes by adding or removing bar elements and then updating
them using the new data. But the immediate change from one
reflection of the data to another feels a little stark and visually
jarring.

D3’s transitions provide the ability to smooth the visual update of
our elements, making them change continuously over a set time
period. This can be both aesthetically appealing and, on occasion,
informative.8 The important thing is that D3 transitions can be very
engaging for the user, which is reason enough to want to master
them.

Figure 16-24 shows the effect we are aiming at. When the bar chart
is updated with a newly selected dataset, we want the bars of any
countries present before and after the transition to morph smoothly
from their old to new positions and dimensions. So in Figure 16-24
the bar for France grows from start to finish over the course of the
transition—say, a couple of seconds—with intermediate bars of
increasing width and height. The axes ticks and labels will adapt too
as the x and y scales change.

Figure 16-24. Tweened bar transitions on update

The effect shown in Figure 16-24 is surprisingly easy to achieve but
involves understanding the precise way data is joined in D3. By

434 | Chapter 16: Introducing D3—The Story of a Bar Chart

9 See Mike Bostock’s nice demonstration of object constancy at his site.

default, when new data is bound to existing DOM elements, it is
done by array index. Figure 16-25 shows how this works, using our
selected bars as an example. The first bar (B0), previously bound to
the USA’s data, is now bound to France’s. It stays in first position and
updates its size and tick label. Essentially, the USA’s bar becomes
France’s.9

Figure 16-25. By default, new data is joined by index

In order to get continuity during our transitions (i.e., for the USA
bar to move to its new position while changing to its new height and
width), we need the new data to be bound by a unique key, not the
index. D3 allows you to specify a function as a second argument to
the data method, which returns a key from the object data to use to
bind the new data to the correct respective bars, assuming they still
exist. Figure 16-26 shows how this is done. Now, the first bar (0) is
bound to the new USA data, changing its position by index as well
as its width and height to that of the new American bar.

Transitions | 435

https://bost.ocks.org/mike/constancy/

Figure 16-26. Using an object key to join new data

Joining the data by key gives us the correct start and end points for
our national bars. Now all we need is a way to create a smooth tran‐
sition between them. We can do this by using a couple of D3’s cool‐
est methods, transition and duration. By calling these before we
change our bar dimension and position attributes, D3 magically
performs a smooth transition between then, as shown in
Figure 16-24. Adding transitions to our bar chart update requires
only a few lines of code:

//...
svg.select('.x.axis')
 .transition().duration(nbviz.TRANS_DURATION)
 .call(xAxis) //...
//...
svg.select('.y.axis')
 .transition().duration(nbviz.TRANS_DURATION)
 .call(yAxis);
//...
var bars = svg.selectAll(".bar")
 .data(data, function(d) {
 return d.code;
 });
//...
bars
 .classed('active', function(d) {
 return d.key === nbviz.activeCountry;
 })
 .transition().duration(nbviz.TRANS_DURATION)
 .attr("x", function(d) { return xScale(d.code); })
 .attr("width", xScale.rangeBand())

436 | Chapter 16: Introducing D3—The Story of a Bar Chart

10 Transitions only apply to existing elements—you can’t fade in the creation of a DOM
element, for example. You could, however, fade it in and out using the opacity CSS
style.

 .attr("y", function(d) { return yScale(d.value); })
 .attr("height", function(d) {
 return height - yScale(d.value); });
//...

A transition with duration of two seconds, which is our
TRANS_DURATION constant of 2000 (ms).

Using the data object’s code property to make the continuous
data joins.

These attributes will be smoothly morphed from current values
to those defined here.

Transitions will work on most obvious attributes and styles of an
existing DOM element.10

The transitions just shown perform a smooth change of the
attributes from starting point to end goal, but D3 allows for a lot of
tuning for these effects. You can, for example, use the delay method
to specify the time before the transition starts. This delay can also be
a function of the data.

Probably the most useful extra transitioning method is ease, which
allows you to specify the way in which the elements’ attributes are
updated over the transition’s duration. The default easing function is
cubic-in-out, but you can also specify things like quad, which speeds
things up as the transition progresses, or bounce and elastic, which
do pretty much what is says on the tin, giving a bouncy feel to the
change. There’s also sin, which speeds up at the beginning and slows
down toward the end. See http://easings.net/ for a nice description of
different easing functions and this block for a cool little demo of
most of those available to D3. Gizma has a great little app you can
use to visualize the different easing functions.

If the easing functions available to D3 don’t suit your needs or you’re
feeling particularly ambitious, as with most things D3 you can roll
your own to fit any subtle requirements. The tween method pro‐
vides the fine-grained control you might need.

Transitions | 437

https://github.com/mbostock/d3/wiki/Transitions#ease
http://easings.net/
http://bl.ocks.org/hunzy/9929724
http://gizma.com/easing/

With a working update pattern and some cool transitions, we have
completed our Nobel-viz bar chart. There’s always room for refine‐
ment, but this bar chart will more than do the job. Let’s summarize
what we’ve learned in this rather large chapter before moving on to
the other components of our Nobel Prize visualization.

Summary
This has been a large and quite challenging chapter. D3 isn’t the easi‐
est library to learn, but I have smoothed the learning curve by
breaking things down into digestible chunks. Take your time
absorbing the fundamental ideas and, crucially, start setting yourself
little objectives to stretch your D3 knowledge. I think D3 is very
much an art form and, more than most libraries, one learns while
doing.

The key elements to understanding D3 and applying it effectively
are the update pattern and the data binding involved. If you under‐
stand this at a fundamental level, most of D3’s other pyrotechnics
slot nicely into place. Focus on the data, enter, exit, and remove
methods and make sure you really understand what’s going on. It’s
the only way to advance from much of the cut-and-paste style of D3
programming, which is initially productive, there being so many
cool examples out there, but will eventually frustrate. Use your
browser’s developer console (currently Chrome and Chromium
have the best tools here) to inspect DOM elements, to see what data
is bound to them via the __data__ variable. If it doesn’t match your
expectations, you’ll learn a lot by finding out why.

You should now have a pretty good grounding in D3’s core techni‐
ques. In the next chapter we’ll aim to challenge those new skills with
a rather more ambitious chart, our Nobel Prize timeline.

438 | Chapter 16: Introducing D3—The Story of a Bar Chart

CHAPTER 17

Visualizing Individual Prizes

In Chapter 16 you learned the basics of D3, how to select and
change DOM elements, how to add new ones, and how to apply the
data update pattern, which is the axis around which interactive D3
spins. In this chapter, I will expand on what you’ve learned so far
and show you how to build a fairly novel visual element, showing all
the individual Nobel Prizes by year (Figure 17-1). This Nobel time‐
line will allow us to expand on the knowledge of the last chapter,
demonstrating a number of new techniques including more
advanced data manipulation.

Figure 17-1. This chapter’s target chart, a timeline of Nobel Prizes

Let’s start by showing how we build the HTML framework for our
timeline chart.

Building the Framework
Our target chart’s construction is similar to that of our Nobel Prize
bar chart, which we covered in detail in the last chapter. We first use
D3 to select our <div> container with id nobel-time, then use the
width and height of the container, along with our specified margins,
to create our svg chart group:

439

/* global $, _, crossfilter, d3 */
(function(nbviz) {
 'use strict';

 var chartHolder = d3.select('#nobel-time');

 var margin = {top:20, right:20, bottom:30, left:40};
 var boundingRect = chartHolder.node()
 .getBoundingClientRect();
 var width = boundingRect.width - margin.left
 - margin.right,
 height = boundingRect.height - margin.top - margin.bottom;

 var svg = chartHolder.append("svg")
 .attr("width", width + margin.left + margin.right)
 .attr("height", height + margin.top
 + margin.bottom)
 .append('g')
 .attr("transform",
 "translate(" + margin.left + ","
 + margin.top + ")");
 // ...

With our svg chart group in place, let’s add the scales and axes.

Scales
To place the circular indicators we use two ordinal scales
(Example 17-1). The x-scale uses the rangeRoundBands method to
specify a 10% padding between the circles. Because we use the x-
scale to set the circles’ diameters, the height of our y-scale’s range is
manually adjusted to accommodate all the indicators, allowing a lit‐
tle padding between them. We use rangeRoundPoints to round to
integer pixel coordinates.

Example 17-1. The chart’s two ordinal scales, for x and y axes

var xScale = d3.scale.ordinal()
 .rangeRoundBands([0, width], 0.1)
 .domain(d3.range(1900, 2015); // years of Nobel Prize

var yScale = d3.scale.ordinal()
 .rangeRoundPoints([height, 0])
 .domain(d3.range(15));// from 0 to max. in any one year

We’re using a padding factor of 0.1, which is approximately 10%
of an indicator’s diameter.

440 | Chapter 17: Visualizing Individual Prizes

Unlike our bar chart from the last chapter, both ranges and domains
of this chart are fixed. The domain of the xScale is the years over
which the Nobel Prize has run, and that of the yScale is from zero
to the maximum number of prizes in any given year (14 in the year
2000). Neither of these will change in response to user interaction,
so we define them outside the update method.

Axes
With a maximum of 14 prizes in any one year and with a circular
indicator for each, it is easy to make a prize count by eye if neces‐
sary. Given this, the emphasis on providing a relative indicator of
prize distribution (e.g., showing the spurt in post-WWII US science
prizes), and the long length of the chart, a y-axis is redundant for
our chart.

For the x-axis, labeling the decades’ starts seems about right. It
reduces visual clutter and is also the standard human way of chart‐
ing historical trends. Example 17-2 shows the construction of our x-
axis, using D3’s handy axis object. We override the tick values using
the tickValues method, filtering the domain range (1900–2015) to
return only those dates ending with zero.

Example 17-2. Making the x-axis, with tick labels per decade

var xAxis = d3.svg.axis()
 .scale(xScale)
 .orient("bottom");
 .tickValues(xScale.domain().filter(
 function(d,i){
 return !(d%10);
 })
);

Returns true for years ending in 0, giving a tick label at the start
of every decade.

Axes | 441

1 D3 has some handy brushes that make selecting portions of the x- or y-axis easy. Com‐
bined with transitions, this can make for an engaging and intuitive way to increase the
resolution of large datasets. See this bl.ocks.org for a good example.

As with the scales, we don’t anticipate the axes changing,1 so we can
add them before receiving the dataset in the updateTimeChart
function:

svg.append("g") // group to hold the axis
 .attr("class", "x axis")
 .attr("transform", "translate(0," + height + ")")
 .call(xAxis)
 .selectAll("text")
 .style("text-anchor", "end")
 .attr("dx", "-.8em")
 .attr("dy", ".15em")
 .attr("transform", "rotate(-65)");

Calls our D3 axis on the svg group, with the axis object taking
care of building the axis elements.

As in “Axes and Labels” on page 427, we rotate the axis tick
labels to place them diagonally.

With axes and scales taken care of, we need only add a little legend
with our colored category labels before moving on to the cool, inter‐
active elements of the chart.

Category Labels
The last of our static components is a legend, containing the cate‐
gory labels shown in Figure 17-2.

Figure 17-2. Categories legend

To create the legend, we first create a group, class labels, to hold
the labels. We bind our nbviz.CATEGORIES data to a label selection
on this labels group, enter the bound data, and attach a group for
each category, displaced on the y-axis by index:

442 | Chapter 17: Visualizing Individual Prizes

http://bl.ocks.org/mbostock/1667367

2 See the D3 GitHub for details.

var catLabels = chartHolder.select('svg').append('g')
 .attr('transform', "translate(10, 10)")
 .attr('class', 'labels')
 .selectAll('label').data(nbviz.CATEGORIES)
 .enter().append('g')
 .attr('transform', function(d, i) {
 return "translate(0," + i * 10 + ")";
 });

Binds our array of categories (["Chemistry", "Economics",
…]) to the label group.

Creates a group for each category, spaced vertically 10 pixels
apart.

Now that we have our catLabels selection, let’s add a circular indi‐
cator (matching those seen in the timeline) and text label to each of
its groups:

catLabels.append('circle')
 .attr('fill', (nbviz.categoryFill))
 .attr('r', xScale.rangeBand()/2);

catLabels.append('text')
 .text(function(d) {
 return d;
 })
 .attr('dy', '0.4em')
 .attr('x', 10);

We use our shared categoryFill method to return a color
based on the bound category.

We use the diameter produced by our xScale to make these cir‐
cles the same size as those in the timeline.

The categoryFill function (Example 17-3) is defined in
nbviz_core.js and is used by the app to provide colors for the cate‐
gories. It uses D3’s hcl method to return equally spaced colors in the
[0, 360] color hue range.2 These are converted by D3 to CSS RGB.

Category Labels | 443

https://github.com/mbostock/d3/wiki/Colors#hsl

Example 17-3. Setting the category colors

nbviz.CATEGORIES = [
 "Physiology or Medicine", "Peace", "Physics",
 "Literature", "Chemistry", "Economics"];

nbviz.categoryFill = function(category){
 var i = nbviz.CATEGORIES.indexOf(category);
 // return equally-spaced color hues
 return d3.hcl(i / cats.length * 360, 60, 70);
};

Now that we’ve covered all static elements to our time chart, let’s
look at how we knock it into usable form with D3’s nest library.

Nesting the Data
In order to create this timeline component, we need to reorganize
our flat array of winners objects into a form that will allow us to
bind it to the individual Nobel Prizes in our timeline. What we need,
to make binding this data with D3 as smooth as possible, is an array
of prize objects by year, with the year groups available as arrays. Let’s
demonstrate the conversion process with our Nobel Prize dataset.

The following is the flat Nobel Prize dataset we begin with, ordered
by year:

// var data =
[
 {"year":1901,"name":"Wilhelm Conrad R\\u00f6ntgen",...},
 {"year":1901,"name":"Jacobus Henricus van \'t Hoff",...},
 {"year":1901,"name":"Sully Prudhomme",...},
 {"year":1901,"name":"Fr\\u00e9d\\u00e9ric Passy",...},
 {"year":1901,"name":"Henry Dunant",...},
 {"year":1901,"name":"Emil Adolf von Behring",...},
 {"year":1902,"name":"Theodor Mommsen",...},
 {"year":1902,"name":"Hermann Emil Fischer",...},
 ...
];

We want to take this data and convert it to the following nested for‐
mat, an array of objects with year keys and winners-by-year values:

// data =
[
 {"key":"1901",
 "values":[
 {"year":1901,"name":"Wilhelm Conrad R\\u00f6ntgen",...},
 {"year":1901,"name":"Jacobus Henricus van \'t Hoff",...},

444 | Chapter 17: Visualizing Individual Prizes

 {"year":1901,"name":"Sully Prudhomme",...},
 {"year":1901,"name":"Fr\\u00e9d\\u00e9ric Passy",...},
 {"year":1901,"name":"Henry Dunant",...},
 {"year":1901,"name":"Emil Adolf von Behring",...}
]
 },
 {"key":"1902",
 "values":[
 {"year":1902,"name":"Theodor Mommsen",...},
 {"year":1902,"name":"Hermann Emil Fischer",...},
 ...
]
 },
 ...
];

We can iterate through this nested array and bind the year groups in
turn, each one represented by a column of indicators in our
timeline.

D3 provides a handy nest operator to convert datasets to the desired
nested form. Example 17-4 achieves the required conversion of our
Nobel Prize dataset.

Example 17-4. Nesting our winners’ array by year

var nestDataByYear = function(entries) {
 return nbviz.data.years = d3.nest()
 .key(function(w) {
 return w.year;
 })
 .entries(entries);
};

Entries is a flat dataset with all the currently selected Nobel
Prize winners.

Creates the first key for our nested array. You can use the key
method multiple times to create deeper nested data. See this
handy bl.ocks.org for some examples and a tutorial.

As discussed in “Basic Data Flow” on page 384, the onDataChange
function uses the nestDataByYear function to convert the array of
selected winners into the data needed by this component’s updateTi
meChartMethod.

Nesting the Data | 445

http://bl.ocks.org/phoebebright/raw/3176159/
http://bl.ocks.org/phoebebright/raw/3176159/

Data nesting is the basis for many of the D3 network examples and
the creation of the flare data structures used by D3’s very cool hier‐
archy layouts. In the nesting terminology, we want each branch of
our simple tree to represent a Nobel Prize year and each leaf one of
the prizes won in that year.

Now that we’ve seen how to turn our dataset into the required nes‐
ted form, let’s see how we use two data entry steps to turn that data
into our prize indicators.

Adding the Winners with a Nested Data-Join
The update pattern used in our time chart is similar to that
explained in “The Update Pattern” on page 422 but with an added
element. Whereas with our bar chart we were creating simple SVG
rect rectangles for each country, here we are creating a group of
prizes for each year. This requires an extra data-join to our update
cycle (using the data, enter, and exit methods).

The nested data is first passed from onDataChange to our time-
chart’s updateTimeChart method. We then create the year groups
using our ordinal xScale to position them horizontally (see
Example 17-5).

Example 17-5. Creating the year groups with a data-join

nbviz.updateTimeChart = function(data) {

 var years = svg.selectAll(".year")
 .data(data, function(d) {
 return d.key;
 });

 years.enter().append('g')
 .classed('year', true)
 .attr('name', function(d) { return d.key;})
 .attr("transform", function(year) {
 return "translate(" + xScale(+year.key) + ",0)";
 });

 years.exit().remove();
 // ...

446 | Chapter 17: Visualizing Individual Prizes

https://github.com/mbostock/d3/wiki/Hierarchy-Layout
https://github.com/mbostock/d3/wiki/Hierarchy-Layout

We want to join the year data to its respective column by its year
key, not the default array index, which will change if there are
year gaps in our nested array, as there often will be for the user-
selected datasets.

Position our year column according to its year key. We use
+year to convert the string to an integer.

Removes any year columns not bound to the new dataset.

Let’s use Chrome’s Elements tab to see the changes we’ve made from
this first data-join. Figure 17-3 shows our year groups nestled nicely
in their parent chart group.

Figure 17-3. The result of creating our year groups during the first
data-join

Let’s also do a sanity check to make sure our nested data has been
bound correctly to its respective year groups. In Figure 17-4, we
select a group element by its year name and inspect it. As required,
the correct data has been bound by year, showing an array of data
objects for the six Nobel Prize winners of 1901.

Adding the Winners with a Nested Data-Join | 447

3 In other words, the Albert Einstein circle indicator will always have the Physics cate‐
gory and be colored green.

Figure 17-4. Checking the results of our first data-join with Chrome’s
console

Having bound our year data to their respective groups, we will use a
second pass to select the winner groups, enter the data, and use it to
append the circle indicators.

The full code is shown in Example 17-6. Note that the circles’ x-
coordinates are fixed relative to their respective year groups and that
each circle is bound to its data object by the name field.3 This means
that after a circle indicator is appended to its group, the only
dynamic attribute is its y-coordinate. This y-value is set by the index
of the circle in its year-group’s values array (containing its winners),
and this can change as the user applies selection filters and the size
of values changes.

Example 17-6. A second data-join to produce the prizes’ circle
indicators

var winners = years.selectAll(".winner")
 .data(function(d) {
 return d.values;
 }, function(d) {
 return d.name;
 });

winners.enter().append('circle')
 .classed('winner', true)
 .attr('fill', function(d) {

448 | Chapter 17: Visualizing Individual Prizes

 return nbviz.categoryFill(d.category);
 })
 .attr('cx', xScale.rangeBand()/2)
 .attr('r', xScale.rangeBand()/2);

winners.attr('cy', function(d, i) {
 return yScale(i);
 });

winners.exit().remove();

This data call first binds the year’s prizes (the values array) to
the year group and then sets the winner’s name as a key to his or
her indicator.

Uses our shared categoryFill method (defined in
nbviz_core.js) to color the indicators by prize category.

Places the center circle on the group’s y-axis by adjusting its x-
position by half the indicator’s radius.

Places the indicator vertically by array index of prize using the
ordinal yScale.

Removes any indicators (keyed by the winner’s name) without
bound data in the new dataset.

The code in Example 17-6 does the job of building our Prize time
chart, creating new indicator circles if required and placing them,
along with any existing ones, at their correct position, as designated
by their array index (see Figure 17-5).

Figure 17-5. The result of our successful second data-join

Adding the Winners with a Nested Data-Join | 449

4 As discussed in “Transitions” on page 434, the visual transition from one dataset to
another can be both informative and lend a sense of continuity to the visualization,
making it more appealing.

5 For example, filtering the prizes by category to show only the Physics winners.

Although we have produced a perfectly usable timeline, which will
respond to user-driven changes in the data, the transition is a little
stark and unengaging.4 Let’s now see a great demonstration of D3’s
power: how the addition of two lines of code can buy a rather cool
visual effect as our timeline changes state.

A Little Transitional Sparkle
As things stand, when the user selects a new dataset,5 the update pat‐
tern in Example 17-6 instantly sets the position of the relevant cir‐
cles. What we now want to do is to animate this repositioning,
smoothing it out over a couple of seconds.

Any user-driven filtering will either leave some existing indicators
(e.g., when we select only the Chemistry prizes from all categories),
add some new ones (e.g., changing our category from Physics to
Chemistry), or do both. An edge case is when the filtering leaves
nothing (e.g., selecting female Economics winners). This means we
need to decide what existing indicators should do and how to ani‐
mate the positioning of new indicators.

Figure 17-6 shows what we want to happen on selecting a subset of
the existing data, in this case filtering all Nobel Prizes to include
only those Physics winners. On the user’s selection of the Physics
category, all indicators except the Physics ones are removed by the
exit and remove methods. Meanwhile, the existing Physics indica‐
tors begin a two-second transition from their current position to an
end position, dictated by their array index.

450 | Chapter 17: Visualizing Individual Prizes

Figure 17-6. Transition on selecting a subset of the existing data

Achieving this effect requires the addition of a single line of code to
our update pattern, adding a transition of duration 2,000 ms to our
update of the circles’ cy attribute:

// ...
winners
 .transition().duration(2000)
 .attr('cy', function(d, i) {
 return yScale(i);
 });

winners.exit().remove();

Moves the circle from its current position to the new one over a
two-second interval.

For newly appended indicators, a nice visual effect is to grow them
from the bottom of the chart to their index-specified positions.
Figure 17-7 shows an example, as the user increases the dataset by
selecting All Categories after a Physics selection. The new circles are
added to bottom of the chart and then all indicators proceed to their
(new) positions over a two-second interval.

A Little Transitional Sparkle | 451

Figure 17-7. Transition on selecting a superset of the existing data

Once again, we can achieve this visual effect by adding a single line
of code to our update pattern:

// ...

winners.enter().append('circle')
 .classed('winner', true)
 .attr('fill', function(d) {
 return nbviz.categoryFill(d.category);
 })
 .attr('cy', height)
 .attr('cx', xScale.rangeBand()/2)
 .attr('r', xScale.rangeBand()/2);

winners
 .transition().duration(2000)
 .attr('cy', function(d, i) {
 return yScale(i);
 });

winners.exit().remove();

We first place the new circles at the bottom of the chart.

Then we move them to their new positions over two seconds.

452 | Chapter 17: Visualizing Individual Prizes

As you can see, D3 makes it really easy to add cool visual effects to
your data transitions. This is a testimony to its solid theoretical core.

We now have our complete timeline chart, which transitions
smoothly in response to data changes initiated by the user.

Summary
Following on from the bar chart in Chapter 16, this chapter exten‐
ded the update pattern, showing how to use a second data-join on
nested data to create a novel chart. It’s important to emphasize that
this ability to create novel visualizations is D3’s great strength: you
are not tied to the particular functionality of a conventional charting
library but can achieve unique transformations of your data. As our
Nobel Prize bar chart showed, it’s easy to build conventional
dynamic charts, but D3 allows for so much more.

We also saw how easy it is to liven up your visualizations with
engaging transformations once a solid update pattern is in place.

In the next chapter, we will build the map component of our Nobel-
viz using D3’s impressive topographic library.

Summary | 453

1 The math of projections, particularly interpolative transitions and the like, can get
quite involved.

CHAPTER 18

Mapping with D3

Building and customizing map visualizations is one of D3’s core
strengths. It has some very sophisticated libraries, allowing for all
kinds of projections, from the workhorse Mercator and ortho‐
graphic to more esoteric ones such as conicEquidistant. Mapping
seems to be something of an obsession for Mike Bostock and Jason
Davies, D3’s core devs, and their attention to detail is striking. If you
have a mapping problem, chances are D3 can do the heavy lifting
required.1 In this chapter, we’ll use our Nobel Prize visualization
(Nobel-viz) map (Figure 18-1) to introduce the core D3 mapping
concepts.

455

2 I use and thoroughly recommend the open source QGIS.
3 Python’s topojson.py and the TopoJSON command-line program.

Figure 18-1. This chapter’s target element

Available Maps
The most popular mapping format is the aging Shapefile, developed
for geographic information system (GIS) software. There are many
free and proprietary desktop programs2 to manipulate and produce
Shapefiles.

Unfortunately, Shapefiles were not designed for the Web, which
would far rather deal in a JSON-based map format, and demands
small, efficient representations to limit bandwidth and related lag.

The good news is that there are many convenient ways to convert
Shapefiles to our preferred TopoJSON format,3 meaning you can
manipulate your Shapefiles in software and then convert them to a
web-friendly format. The standard way of finding maps for web
dataviz is to first look for TopoJSON or GeoJSON versions, then
search among the richer pool of Shapefiles, and, as a last resort, roll
your own using a Shapefile, or equivalent, editor. Depending on
how much map visualization you intend to do, there will probably
be an off-the-shelf solution. For things like world maps or continen‐
tal projections (e.g., the popular Albers-USA), you can usually find a
number of solutions with different degrees of accuracy.

For our Nobel map, we want a global mapping, at least showing all
58 Nobel Prize–winning nations, with labeled shapes for pretty

456 | Chapter 18: Mapping with D3

http://www.qgis.org/en/site/
https://en.wikipedia.org/wiki/Shapefile

4 As we’ll see, it does lack a couple of our Nobel Prize countries, but these are too small
to be clickable and we have the coordinates of their centers, allowing for a visual cue to
be overlaid.

much all of them. Luckily, D3 provides a number of example world
maps, one at 50m grid resolution, the other a smaller 110m resolu‐
tion map. The latter is fine for our fairly crude requirements.4

D3’s Mapping Data Formats
D3 makes use of two JSON-based geometric data formats, GeoJSON
and TopoJSON, an extension of GeoJSON devised by Mike Bostock
that encodes topology. GeoJSON is more intuitive to read, but Topo‐
JSON is far more efficient in most cases. Typically, maps are con‐
verted to TopoJSON for web delivery, where size is an important
consideration. The TopoJSON is then converted to GeoJSON via D3
on the browser, to simplify SVG path creation, feature optimization,
and so on.

There is a nice summation of the differences
between TopoJSON and GeoJSON on Stack
Overflow.

Let’s have a look at the two formats now. Understanding their basic
structure is important and a little effort there will pay off, especially
as your mapping endeavors become more ambitious.

GeoJSON
GeoJSON files contain one type object, one of Point, MultiPoint,
LineString, MultiLineString, Polygon, MultiPolygon, GeometryCol‐
lection, Feature, or FeatureCollection. The case of the type member
values must be CamelCase, as shown here. They may also contain a
crs member, specifying a particular coordinate reference system.

FeatureCollections are the largest GeoJSON container, and maps
with more than one region are usually specified with these. Feature‐
Collections contain a features array, each element of which is a
GeoJSON object of a type listed in the previous paragraph.

D3’s Mapping Data Formats | 457

http://geojson.org/
https://github.com/mbostock/topojson
http://bit.ly/2621NJg
http://bit.ly/2621NJg
http://bit.ly/1V2p2Yr

Example 18-1 shows a typical FeatureCollection containing an array
of country maps, the boundaries of which are specified by Polygons.

Example 18-1. The GeoJSON mapping data format

{
 "type": "FeatureCollection",
 "features": [
 {
 "type": "Feature",
 "id": "AFG",
 "properties": {
 "name": "Afghanistan"
 },
 "geometry": {
 "type": "Polygon",
 "coordinates": [
 [
 [
 61.210817,
 35.650072
],
 [
 62.230651,
 35.270664
],
 ...
]
]
 }
 },
 ...
 {
 "type": "Feature",
 "id": "ZWE",
 "properties": {
 "name": "Zimbabwe"
 },
 "geometry": {
 "type": "Polygon",
 "coordinates": [
 [
 [...
 }
 }
]
}

458 | Chapter 18: Mapping with D3

5 See http://bost.ocks.org/mike/simplify/ for a very cool example.

Each GeoJSON file contains a single object wth a type and con‐
taining…

…an array of Features—in this case, country objects…

…with coordinate-based, polygonal geometry.

Note that the geographic coordinates are given in [Longitude,
Latitude] pairs, the reverse of conventional geographic position‐
ing. This is because GeoJSON use an [X,Y] coordinate scheme.

Although GeoJSON is more succinct than Shapefiles and in the pre‐
ferred JSON format, there is a lot of redundancy in the encoding of
maps. For example, shared boundaries are specified twice and the
floating-point coordinate format is fairly inflexible and, for many
jobs, too precise. The TopoJSON format was designed to address
these issues and produce a far more efficient way of delivering maps
to the browser.

TopoJSON
Developed by Mike Bostock, TopoJSON is an extension to GeoJSON
that encodes topology, stitching geometries together from a shared
pool of line segments called arcs. Because they reuse these arcs,
TopoJSON files are typically 80% smaller than their GeoJSON
equivalents! In addition, taking a topological approach to map rep‐
resentation enables a number of techniques that use topology. One
of these is topology-preserving shape simplification,5 which can
eliminate 95% of map points while retaining sufficient detail. Carto‐
grams and automatic map coloring are also facilitated. Example 18-2
shows the structure of a TopoJSON file.

Example 18-2. Structure of our TopoJSON world map

{
 "type":"Topology",
 "objects:{
 "countries":{
 "type": "GeometryCollection",
 "geometries": [{

D3’s Mapping Data Formats | 459

http://bost.ocks.org/mike/simplify/

 "_id":24, "arcs":[[6,7,8],[10,11,12]], ...
 ...},
 "land":{...},
 },
 "arcs":[[[67002,72360],[284,-219],[209..]], <-- arc number 0
 [[70827,73379],[50,-165]], ... <-- arc number 1
 ...]
 "transform":{
 "scale":[
 0.003600036...,
 0.001736468...,
],
 "translate":[
 -180,
 -90
]
 }
}

TopoJSON objects have a Topology type and must contain an
objects object and an array of arcs.

In this case, the objects are countries and land, both being arc-
defined GeometryCollections.

Each geometry (in this case defining a country shape) is defined
by a number of arc paths, comprising continuous arcs refer‐
enced by their index in the arcs array .

An array of component arcs used to construct the objects. The
arcs are referenced by index.

Numbers needed to quantize positions as integers rather than
floats.

Given that you probably won’t be manipulating TopoJSON files
directly but instead converting Shapefiles or GeoJSON files into
them, and that D3 converts the arc-based shapes into SVG paths, the
most important thing to know is how to create efficient TopoJSON
files from existing GeoJSON and ESRI shapefiles. Handily, D3 pro‐
vides topojson, a command-line utility to do just this.

Converting Maps to TopoJSON
You can install TopoJSON via the node repositories (see Chapter 1),
using the -g flag to make it a global install.

460 | Chapter 18: Mapping with D3

http://www.esri.com/

$ npm install -g topojson

With topojson installed, converting an existing GeoJSON or Shape‐
file into TopoJSON is as easy as can be. Here we call topojson from
the command line on a GeoJSON geo_input.json file, specifying an
output file topo_output.json:

$ topojson -o topo_output.json geo_input.json

Alternatively, you can pipe the result to a file:

$ topojson geo_input.json > topo_output.json

topojson will also convert ESRI shapefiles:

$ topojson -o topo_output.json input.shp

topojson can also convert CSV files into TopoJSON, where each
CSV row represents a point feature.

topojson has a number of useful options, such as quantization,
which allows you to specify your map’s precision. Playing around
with this option can result in a much smaller file with little percepti‐
ble reduction in quality. Simplification is a similar option, allowing
you to play with the balance of detail and file size. You can see the
full spec on the TopoJSON GitHub page.

If you want to convert your map files programmatically, there
is a handy Python library for the job, topojson.py. You can find it on
GitHub.

Now that we’ve got our map data in a light, efficient, web-optimized
format, let’s see how we use JavaScript to turn it into interactive web
maps.

D3 Geo, Projections, and Paths
D3 has a client-side topojson library, dedicated to dealing with
TopoJSON data. This converts the optimized, arc-based TopoJSON
to the coordinate-based GeoJSON, ready to be manipulated by D3’s
projections and paths, objects in the d3.geo library.

Example 18-3 shows the process of extracting the GeoJSON features
needed by our Nobel map from the TopoJSON world-100m.json
map. This provides us with the coordinate-based polygons repre‐
senting our countries and their borders.

D3 Geo, Projections, and Paths | 461

https://github.com/mbostock/topojson/wiki/Command-Line-Reference
https://github.com/calvinmetcalf/topojson.py

In order to extract the GeoJSON features we require from the
TopoJSON world object just delivered to the browser, we use topo
json’s feature and mesh methods. feature returns the GeoJSON
Feature or FeatureCollection for the specified object and mesh the
GeoJSON MutliLineString geometry object representing the mesh
for the specified object.

The feature and mesh methods take as their first argument the
TopoJSON object and as their second a reference to the feature we
want to extract (land and countries in Example 18-3). In our world
map, countries is a FeatureCollection with a features array of
countries (Example 18-3,).

The mesh method has a third argument, which specifies a filter func‐
tion, taking as arguments the two geometry objects (a and b) shar‐
ing the mesh arc. If the arc is unshared, then a and b are the same,
allowing us to filter out external borders in our world map
(Example 18-3,).

Example 18-3. Extracting our TopoJSON features

 queue()
 .defer(d3.json, "data/world-110m.json") // world map
 //...
 .await(ready);
 //...
 function ready(error, worldMap...){
 //...
 nbviz.initMap(worldMap, ...
 }
 //...
 nbviz.initMap = function(world, ...){

 var land = topojson.feature(world, world.objects.land),
 countries = topojson
 .feature(world, world.objects.countries)
 .features,
 borders = topojson.mesh(
 world, world.objects.countries, function(a, b){
 return a !== b;
 });

Uses D3’s queue to asynchronously load the map data in
TopoJSON format.

462 | Chapter 18: Mapping with D3

6 The extended set of D3 projections is part of an extension of D3, not in the main core.

Uses topojson to extract our desired features from the
TopoJSON data, delivering them in the GeoJSON format.

Filters for only internal borders, shared between countries. If an
arc is only used by one geometry (in this case, a country), then a
and b are identical.

Map presentation in D3 generally follows a standard pattern. We
first create a D3 projection, using one of D3’s many and varied
alternatives. We then create a path using this projection. This path
is then used to convert the features and meshes extracted from our
TopoJSON object into the SVG paths displayed in the browser win‐
dow. Let’s now look at the rich subject of D3 projections.

Projections
Probably the chief challenge for maps, since the time it was appreci‐
ated that the Earth is spheroidal, is that of representing a three-
dimensional globe, or significant parts of it, in a two-dimensional
form. In 1569, the Flemish cartographer Gerardus Mercator
famously resolved this by extending lines from the Earth’s center to
significant boundary coordinates and then projecting them onto a
surrounding cylinder. This had the useful property of representing
lines of constant course, known as rhumb lines, as straight line seg‐
ments, a very useful feature for the seafaring navigators intended to
use the map. Unfortunately, the projection process distorts distances
and size, magnifying the scale as one moves from the equator to the
pole. As a result of this, the huge African continent appears not
much bigger than Greenland when in reality it is around 14 times
the size.

All projections are, like Mercator’s, a compromise, and what’s great
about D3 is that the rich array of choices means one can balance
these compromises to find the right projection for the job.6

Figure 18-2 shows some alternative projections for our Nobel map,
including the equirectangular one chosen for the final visualization.
The constraint was to show all Nobel Prize–winning countries
within the rectangular window and to try to maximize the space

D3 Geo, Projections, and Paths | 463

https://github.com/d3/d3-geo-projection

7 See http://bl.ocks.org/mbostock/3795544 for a nice demonstration.

available, particularly in Europe where there are many countries that
are small geographically but have a relatively large prize haul.

Figure 18-2. Some alternative mapping projections for the Nobel map

To create a D3 projection, just use one of the applicable d3.geo
methods:

var projection = d3.geo.equirectangular()
...

D3 projections have a number of useful methods. It’s common to
use the translate method to translate the map by half the width
and height of the container, overriding the default of [480, 250]. You
can also set the precision, which affects the degree of adaptive
resampling used in the projection. Adaptive resampling is a clever
technique to increase the accuracy of projected lines while still per‐
forming efficiently.7 The scale of the map and its center’s longitude
and latitude can be set by the scale and center methods.

Putting the projection methods together, the following code is that
used by our Nobel-viz world equirectangular map. Note that it’s
hand-tweaked to maximize the space given to Nobel Prize–winning
countries. The two poles are truncated, there being no winners in
either the Arctic or Antarctic (note that equirectangular maps
assume a width/height ratio of 2):

464 | Chapter 18: Mapping with D3

http://bl.ocks.org/mbostock/3795544

var projection = d3.geo.equirectangular()
 .scale(193 * (height/480))
 .center([15,15])
 .translate([width / 2, height / 2])
 .precision(.1);

Enlarged slightly; the default height is 480 and scale 153.

Centered at 15 degrees east, 15 degrees north.

With our equirectangular projection defined, let’s see how you use
it to create a path, which will in turn be used to create the SVG
maps.

Paths
Once you’ve settled on an appropriate projection for your map,
you use it to create a D3 geographic path generator, which is a speci‐
alized variant of the SVG path generator (d3.svg.path). This path
takes any GeoJSON feature or geometry object, such as a Feature‐
Collection, Polygon, or Point, and returns the SVG path data string
for the d element. For example, with our map borders object, the
geographic border coordinates describing a MultiLineString are
converted into path coordinates for SVG.

Generally, we create our path and set its projection in one go:

var projection = d3.geo.equirectangular()
// ...

var path = d3.geo.path()
 .projection(projection);

Typically, we use the path as a function to generate the d attribute to
an SVG path, using GeoJSON data bound using the datum method
(used to bind a single object—not array—and shorthand for
data([objects])). So to use the borders data we just extracted
using topojson.mesh to draw our country borders, we use the
following:

// BOUNDRY MARKS
svg.insert("path", ".graticule") // insert before the graticule
 .datum(borders)
 .attr("class", "boundary")
 .attr("d", path);

D3 Geo, Projections, and Paths | 465

8 See the D3 GitHub for a full list.

Figure 18-3 shows output from the Chrome Console for the
TopoJSON borders object, extracted from our world-map data, and
the resultant path generated by our D3.geo path, using the equirec‐
tangular projection.

Figure 18-3. Path generator, from geometry to SVG path

The geo-path generator is the mainstay of D3 map presentations. I
recommend playing around with different projections with simple
geometries to get a feel for things, investigating the astonishing
number of examples found at bl.ocks.org and the docs on D3’s Git‐
Hub page, and checking out this great little demo.

Now let’s look at one of the useful d3.geo components you’ll use in
your maps, the graticule (or map grid).

Graticules
A useful component of d3.geo and one used in our Nobel map is the
graticule, one of the geo shape generators.8 This creates a global
mesh of meridians (lines of longitude) and parallels (lines of lati‐
tude), spaced by default at 10 degrees. When our path is applied to
this graticule, it generates a suitably projected grid, as shown back
in Figure 18-1.

Example 18-4 shows how to add a graticule to your map. Note that
if you want your grid to overlay your map paths, then its SVG path

466 | Chapter 18: Mapping with D3

https://github.com/mbostock/d3/wiki/Geo-Paths#shape-generators
http://bl.ocks.org/mbostock
https://github.com/mbostock/d3/wiki/Geo-Projections
https://github.com/mbostock/d3/wiki/Geo-Projections
http://bl.ocks.org/mbostock/3711652

should come after the map paths in the DOM tree. As you’ll see, you
can use D3’s insert method to enforce this order.

Example 18-4. Creating a graticule

var graticule = d3.geo.graticule()
 .step([20, 20]);

svg.append("path")
 .datum(graticule)
 .attr("class", "graticule")
 .attr("d", path);

Create graticule, overriding the default 10 degree steps.

Note the datum shorthand for data([graticule]).

Use the path generator to receive the graticule data and return
a grid path.

Now that we have our grid overlay and the ability to turn our map
file into SVG paths with the required projection, let’s put the ele‐
ments together.

Putting the Elements Together
Using the projection, path, and graticule components discussed,
we’ll now create the basic map. This map is intended to respond to
user events, highlighting those countries represented by the selected
winners, and reflecting the number of winners with a filled red cir‐
cle at the countries’ centers. We’ll deal with this interactive update
separately.

Example 18-5 shows the code required to build a basic global map. It
follows what should now be a familiar pattern, getting the mapCon
tainer from its div container (id nobel-map), appending an <svg>
tag to it, and then proceeding to add SVG elements, which in this
case are D3-generated map paths.

Our map has fixed components (e.g., the choice of projection and
path) that are not dependent on any data change and are defined
outside the initializing nbviz.initMap method. nbviz.initMap is
called when the visualization is initialized with data from the server.

Putting the Elements Together | 467

It receives the TopoJSON world object and uses it to build the basic
map with the path object. Figure 18-4 shows the result.

Example 18-5. Building the map basics

// DIMENSIONS AND SVG
var mapContainer = d3.select('#nobel-map');
var boundingRect = mapContainer.node().getBoundingClientRect();
var width = boundingRect.width
 height = boundingRect.height;
var svg = mapContainer.append('svg');
// OUR CHOSEN PROJECTION
var projection = d3.geo.equirectangular()
 .scale(193 * (height/480))
 .center([15,15])
 .translate([width / 2, height / 2])
 .precision(.1);
// CREATE PATH WITH PROJECTION
var path = d3.geo.path()
 .projection(projection);
// ADD GRATICULE
var graticule = d3.geo.graticule()
 .step([20, 20]);
svg.append("path")
 .datum(graticule)
 .attr("class", "graticule")
 .attr("d", path);
// A RADIUS SCALE FOR OUR CENTROID INDICATORS
var radiusScale = d3.scale.sqrt()
 .range([nbviz.MIN_CENTROID_RADIUS, nbviz.MAX_CENTROID_RADIUS]);
// OBJECT TO MAP COUNTRY NAME TO GEOJSON OBJECT
var cnameToCountry = {};
// INITIAL MAP CREATION, USING DOWNLOADED MAP DATA
nbviz.initMap = function(world, names) {
 // EXTRACT OUR REQUIRED FEATURES FROM THE TOPOJSON
 var land = topojson.feature(world, world.objects.land),
 countries = topojson.feature(world, world.objects.countries)
 .features,
 borders = topojson.mesh(world, world.objects.countries,
 function(a, b) { return a !== b; });
 // MAIN WORLD MAP
 svg.insert("path", ".graticule")
 .datum(land)
 .attr("class", "land")
 .attr("d", path)
 ;
 // COUNTRY PATHS
 svg.insert("g", ".graticule")
 .attr("class", 'countries');
 // COUNTRIES VALUE-INDICATORS

468 | Chapter 18: Mapping with D3

 svg.insert("g")
 .attr("class", "centroids");
 // BOUNDARY LINES
 svg.insert("path", ".graticule")
 .datum(borders)
 .attr("class", "boundary")
 .attr("d", path);

 // CREATE OBJECT MAPPING COUNTRY NAMES TO GEOJSON SHAPES
 var idToCountry = {};
 countries.forEach(function(c) {
 idToCountry[c.id] = c;
 });

 names.forEach(function(n) {
 cnameToCountry[n.name] = idToCountry[n.id];
 });

};
// ...
// DRAW MAP ON DATA LOAD
nbviz.drawMap(world, names, countryData);

world TopoJSON object with the country features with a names
array connecting country names to country feature ids (e.g.,
{id:36, name: Australia}).

Note that we insert this path before the graticule grid, keeping
the grid overlay on top.

Uses datum to assign the whole land object to our path.

Object that, if given country-name key, returns its respective
GeoJSON geometry.

Putting the Elements Together | 469

Figure 18-4. The basic map

With our map shapes in place, we can use a little CSS to style
Figure 18-4, adding a light azure for the oceans and light gray for the
land. The graticule is a half-transparent dark gray and the country
boundaries white:

/* NOBEL-MAP STYLES */
#nobel-map {
 background: azure;
}

.graticule {
 fill: none;
 stroke: #777;
 stroke-width: .5px;
 stroke-opacity: .5;
}

.land {
 fill: #ddd;
}

.boundary {
 fill: none;
 stroke: #fff;
 stroke-width: .5px;
}

With the SVG map assembled, let’s see how we use the winners data‐
set to draw the Nobel Prize–winning countries and the red indicator
for number of wins.

470 | Chapter 18: Mapping with D3

Updating the Map
The first time our Nobel map gets updated is when the visualization
is initialized. At this point the selected dataset is unfiltered, contain‐
ing all the Nobel Prize winners. Subsequently, in response to filters
applied by the user (e.g., all the Chemistry winners or those from
France), the dataset will change and our map changes to reflect that.

So updating the map involves sending it a dataset of the Nobel
Prize–winning countries with their current prize haul, dependent on
the user filters applied. To do this, we use an updateMap method:

nbviz.updateMap = function(countryData) { //...

The countryData array has this form:

[
 {
 code: "USA",
 key: "United States",
 population: 319259000,
 value: 336
 },
 // ... 56 more countries
]

The number of winners for the US in the currently selected
dataset.

We want to convert this array before sending it to our D3 map. The
following code does this job, providing an array of country objects
with properties geo (the country’s GeoJSON geometry), name (the
country name), and number (the country’s number of Nobel Prize
winners).

var mapData = countryData
 .filter(function(d) {
 return d.value > 0;
 })
 .map(function(d) {
 return {
 geo: cnameToCountry[d.key],
 name: d.key,
 number: d.value
 };
});

Updating the Map | 471

Filters out countries with no winners—we only display winning
countries on the map.

Uses the country’s key (its name in this case) to retrieve its Geo‐
JSON feature.

We want to display a red circular indicator at the center of our win‐
ning countries, indicating the number of prizes won. The circles’
areas should be proportional to the number of prizes won (absolute
or per capita), which means (by circle area = pi × radius-squared)
their radius should be a function of the square root of that prize
number. D3 provides a handy sqrt scale for just such a need, allow‐
ing you to set a domain (min and max prize number in this case)
and a range (min and max indicator radius).

Let’s see a quick example of the sqrt scale in action. In the follow‐
ing, we set a scale with a domain between 0 and 100 and a zero-
based range with a maximum area of 25 (5 × 5). This means calling
the scale with 50 (half the range) should give the square root of half
the maximum area (12.5):

var sc = d3.scale.sqrt().domain([0, 100]).range([0, 5]);
sc(50) // returns 3.5353..., the square root of 12.5

To create our indicator radius scale, we create a sqrt scale using the
maximum and minimum radii specified in nbviz_core.js to set its
range:

var radiusScale = d3.scale.sqrt()
 .range([nbviz.MIN_CENTROID_RADIUS,
 nbviz.MAX_CENTROID_RADIUS]);

In order to get the domain to our scales, we use this mapData to get
the maximum number of winners per country and use that value as
the domain’s upper value, with 0 for its lower:

var maxWinners = d3.max(mapData.map(function(d) {
 return d.number;
}));
// DOMAIN OF VALUE-INDINCATOR SCALE
radiusScale.domain([0, maxWinners]);

To add our country shapes to the existing map, we bind mapData to a
selection on the countries group of class country and implement
an update pattern (see “The Update Pattern” on page 422) to first
add any country shapes required by the mapData. Instead of remov‐
ing unbound country paths, we use the CSS opacity property to

472 | Chapter 18: Mapping with D3

make the bound countries visible and the unbound invisible. A two-
second transition is used to make these countries fade in and out
appropriately. Example 18-6 shows the update pattern.

Example 18-6. Updating the country shapes

nbviz.updateMap = function(countryData) {
// mapData = filtered countryData
// ...
 // BIND MAP DATA TO THE COUNTRY PATHS USING THE NAME KEY
 var countries = svg.select('.countries').selectAll('.country')
 .data(mapData, function(d) {
 return d.name;
 });
 // ENTER AND APPEND ANY NEW COUNTRIES
 countries.enter()
 .append('path')
 .attr('class', 'country')
 .on('mouseenter', function(d) {
 // console.log('Entered ' + d.name);
 d3.select(this).classed('active', true);
 })
 .on('mouseout', function(d) {
 // console.log('Left ' + d.name);
 d3.select(this).classed('active', false);
 })
 ;
 // UPDATE ALL BOUND COUNTRIES
 countries
 .attr('name', function(d) {
 return d.name;
 })
 .classed('visible', true)
 .transition().duration(nbviz.TRANS_DURATION)
 .style('opacity', 1)
 .attr('d', function(d) {
 return path(d.geo);
 });
 // REMOVE ANY UNBOUND COUNTRIES
 countries.exit()
 .classed('visible', false)
 .transition().duration(nbviz.TRANS_DURATION)
 .style('opacity', 0);
 //...
};

Classes a country as active as the mouse cursor enters it, and as
inactive as it leaves.

Updating the Map | 473

We keep track of the visible and invisible (opacity of 0) coun‐
tries by using a visible class. We’ll use this in “Building a Sim‐
ple Tooltip” on page 478 to decide whether to show a mouse
tooltip over a country.

Fades in any newly data-bound countries over two seconds by
increasing their opacity to 1.

Builds the country’s path using its geo GeoJSON feature.

Fades out any data-unbound countries by setting their opacity
to 0 over two seconds—nbviz.TRANS_DATA-UNBOUND is 2000
(ms).

Note that we add a CSS country class to countries in mapData, set‐
ting their color to a light khaki green. In addition to this the mouse
events are used to class the country active if the cursor is over it,
highlighting it with a darker green. Here are the CSS classes:

.country{
 fill: rgb(175, 195, 186); /* light green */
}

.country.active{
 fill: rgb(155, 175, 166); /* dark green */
}

The update pattern shown in Example 18-6 will smoothly transition
from old to new datasets, produced in response to user-applied fil‐
ters and passed to updateMap. All we need now is to add similarly
responsive filled circular indicators, centered on the active countries
and reflecting their current value, either an absolute or relative (per
capita) measure of their Nobel Prize haul.

Adding Value Indicators
To add our circular value indicators, we want an update pattern that
mirrors that used to create our country SVG paths. We want to bind
to the mapData dataset and append, update, and remove our indica‐
tor circles accordingly. As with the country shapes, we’ll adjust the
indicators’ opacity to add and remove them from the map.

The indicators need to be placed at the center of their respective
countries. D3’s path generator provides a number of useful utility

474 | Chapter 18: Mapping with D3

methods for dealing with GeoJSON geometries. One of them is
centroid, which computes the projected centroid for the specified
feature:

// Given the GeoJSON of country (country.geo)
// calculate x, y coords of center
var center = path.centroid(country.geo);
// center = [x, y]

While path.centroid does a pretty good job as a rule, and is very
useful for labeling shape, boundaries, and so on, it can produce
strange results, particularly with highly concave geometries.
Handily, the world country data we stored in “Getting Country Data
for the Nobel Dataviz” on page 135 contains the central coordinates
of all our Nobel Prize countries.

We’ll first write a little method to retrieve those given a mapData
object:

var getCentroid = function(d) {
 var latlng = nbviz.data.nationalData[d.name].latlng;
 return projection([latlng[1], latlng[0]]);
};

Get the latitude and longitude of our country’s center by name,
using the stored world country data.

Use our equirectangular projection to turn these into SVG
coordinates.

As shown in Example 18-7, we bind our mapData to the selection of
all elements of class centroid in the centroids group we added in
Example 18-5. The data is bound via the name key.

Example 18-7. Adding prize-haul indicators to the Nobel countries’
centroids

nbviz.updateMap = function(countryData) {
//...
 // BIND MAP DATA WITH NAME KEY
 var centroids = svg.select('.centroids')
 .selectAll(".centroid")
 .data(mapData, function(d) {
 return d.name;
 });
 // ENTER TO APPEND INDICATORS
 centroids.enter().append('circle')
 .attr("class", "centroid");

Adding Value Indicators | 475

 // UPDATE RADIUS AND OPACITY OF INDICATORS
 centroids.attr("name", function(d) {
 return d.name;
 })
 .attr("cx", function(d) {
 return getCentroid(d)[0];
 })
 .attr("cy", function(d) {
 return getCentroid(d)[1];
 })
 .classed('active', function(d) {
 return d.name === nbviz.activeCountry;
 })
 .transition().duration(nbviz.MAP_DURATION)
 .style('opacity', 1)
 .attr("r", function(d) {
 return radiusScale(+d.number);
 });
 // MAKE UNBOUND INDICATORS INVISIBLE
 centroids.exit()
 .style('opacity', 0);

};

Binds the data to the centroid elements using the name key.

Uses our getCentroid method to turn geo-coords into SVG
coords.

If the country is currently selected, class it active.

Fades in newly active indicators over two seconds.

Our sqrt scale adjusts the radius to keep the indicator circle
area proportionate to number of winners (either absolute or per
capita).

Using a bit of CSS, we can make the indicators red and slightly
transparent, allowing map details and, where they are densely
packed in Europe, other indicators to show through. If the country
is selected by the user, using the country filter on the UI bar, it is
classed as active and given a golden hue. Here’s the CSS to do that:

.centroid{
 fill: red;
 fill-opacity:0.3;
 pointer-events:none;
}

476 | Chapter 18: Mapping with D3

.centroid.active {
 fill:goldenrod;
 fill-opacity:0.6;
}

This allows mouse events to propagate to country shapes below
the circles, allowing the user to still click on them.

The active centroid indicators we just added are the last element of
our Nobel Prize map. Now let’s take a look at the complete article.

Our Completed Map
With the country and indicator update patterns in place, our map
should respond to user-driven filtering with a smooth transition.
Figure 18-5 shows the result of selecting Nobel Prizes for Econom‐
ics. Only winning countries remain highlighted and the value indi‐
cators are resized, reflecting American dominance of this category.

Figure 18-5. (A) Shows the map with the full Nobel dataset; (B) Prizes
are filtered by category, showing the Economics winners (and the dom‐
inance of the US economists)

The map as it stands in not interactive but does show when a user
hovers over a particular country with a mouse, by calling the
mouseenter and mouseout callback functions and adding or remov‐
ing an active class. These callbacks could easily be used to add
more functionality to the map, such as tooltips or the use of the cou‐
tries as clickable data filters. Let’s now use these to build a simple
tooltip, to show the country the mouse is hovering over and some
simple prize information.

Our Completed Map | 477

Building a Simple Tooltip
Tooltips and other interactive widgets are the kind of thing com‐
monly demanded of data visualizers and though they can get quite
involved, particularly if they themselves are interactive (e.g., menus
that appear on mouse hover), there are some simple recipes that are
very handy to know. In this section, I’ll show how to build a simple
but pretty effective tooltip. Figure 18-6 shows what we’re aiming to
build.

Figure 18-6. A simple tooltip for our Nobel Prize map

Let’s remind ourselves of our current countries update, with
mouseenter and mouseout callback functions:

 // ENTER AND APPEND ANY NEW COUNTRIES
 countries.enter()
 .append('path')
 .attr('class', 'country')
 .on('mouseenter', function(d) {
 d3.select(this).classed('active', true);
 })
 .on('mouseout', function(d) {
 d3.select(this).classed('active', false);
 })
 ;

In order to add a tooltip to our map, we need to do three things:

1. Create a tooltip box in HTML with placeholders for the infor‐
mation we want to display—in this case, country name and
number of wins in the selected prize category.

2. Display this HTML box over the mouse when the user moves it
into a country and hide it when they move the mouse out.

478 | Chapter 18: Mapping with D3

3. Update the box when displayed using the data bound to the
country underneath the mouse.

We create the HTML for the tooltip by adding a content block to the
Nobel-viz map section, with id map-tooltip, an <h2> header for its
title, and a <p> tag for the tooltip’s text:

<!-- templates/index.html -->
 <!-- ... -->
 <div id="nobel-map">
 <div id="map-tooltip">
 <h2></h2>
 <p></p>
 </div>
 <!-- ... -->

We’ll also need some CSS for the tooltip’s look and feel, added to our
style.css file:

/* css/style.css */
/* MAP TOOLTIP */
#map-tooltip {
 position: absolute;
 pointer-events:none;
 color:#eee;
 font-size:12px;
 opacity:0.7; /* a little transparent */
 background:#222;
 border:2px solid #555;
 border-color: goldenrod;
 padding:10px;
 left: -999px;
}

#map-tooltip h2 {
 text-align: center;
 padding: 0px;
 margin: 0px;
}

Setting pointer-events to none effectively lets you click on
things underneath the tooltip.

Initially, the tooltip is hidden far to the (virtual) left of the
browser window, using a large negative x index.

With our tooltip’s HTML in place and the element hidden to the left
of the browser window (left is –999 pixels), we just need to extend
our mousein and mouseout callback functions to display or hide the

Building a Simple Tooltip | 479

tooltip. The mousein function, called when the user moves the
mouse into a country, does most of the work:

// ...
countries.enter()
 .append('path')
 .attr('class', 'country')
 .on('mouseenter', function(d) {

 var country = d3.select(this);
 // don't do anything if the country is not visible
 if(!country.classed('visible')){ return; }

 // get the country data object
 var cData = country.datum();
 // if only one prize, use singular 'prize'
 var prize_string = (cData.number === 1)?
 ' prize in ': ' prizes in ';
 // set the header and text of the tooltip
 tooltip.select('h2').text(cData.name);
 tooltip.select('p').text(cData.number
 + prize_string + nbviz.activeCategory);
 // set the border color according to selected
 // prize category
 var borderColor =
 (nbviz.activeCategory === nbviz.ALL_CATS)?
 'goldenrod':
 nbviz.categoryFill(nbviz.activeCategory);
 tooltip.style('border-color', borderColor);

 var mouseCoords = d3.mouse(this);
 var w = parseInt(tooltip.style('width')),
 h = parseInt(tooltip.style('height'));
 tooltip.style('top', (mouseCoords[1] - h) + 'px');
 tooltip.style('left', (mouseCoords[0] - w/2) + 'px');

 d3.select(this).classed('active', true);
 })

D3’s mouse method returns the mouse coordinates (here, rela‐
tive to the parent map group) in pixels, which we can use to
position the tooltip.

We get the computed width and height of the tooltip box, which
has been adjusted to accommodate our country title and prize
string.

We use the mouse coordinates and the width and height of the
tooltip box to position the box centered horizontally and

480 | Chapter 18: Mapping with D3

roughly above the mouse cursor (the width and height don’t
include our 10px of padding around the tooltip’s <div>).

With the mouseenter callback function written, we now only need a
mouseout to hide the tooltip by placing it far to the left of the
browser window:

countries.enter()
 .append('path')
 .attr('class', 'country')
 // ...
 .on('mouseout', function(d) {
 tooltip.style('left', '-9999px');
 d3.select(this).classed('active', false);
 })

With the mouseenter and mouseout functions operating in concert,
you should see the tooltip appearing and disappearing where
needed, just as shown in Figure 18-6.

Now that we’ve built the map component of our Nobel dataviz, let’s
summarize what we’ve learned before moving on to show how user
input drives the visualization.

Summary
D3 mapping is a rich area, with many varied projections and lots of
utility methods to help with manipulating geometries. But building
a map follows a fairly standard procedure, as demonstrated in the
chapter: you first choose your projection—say, a Mercator or maybe
the Albers conic projection commonly used for mapping the US.
You then use this projection to create a D3 path generator, which
turns GeoJSON features into SVG paths, creating the map you see.
The GeoJSON will normally be extracted from more efficient
TopoJSON data.

This chapter also demonstrated how easy it is with D3 to interac‐
tively highlight your map and deal with cursor movements. Taken
together, the basic set of skills learned should allow you to start
building your own mapping visualizations.

Now that we’ve constructed all of our SVG-based graphical ele‐
ments, let’s see how well D3 works with conventional HTML ele‐
ments by building our winners’ list and an individual’s biography
box.

Summary | 481

CHAPTER 19

Visualizing Individual Winners

We want our Nobel Prize visualization (Nobel-viz) to include a list
of currently selected winners and a biography box (aka bio-box) to
display the details of an individual winner (see Figure 19-1). By
clicking on a winner in the list the user can see his or her details in
the bio-box. In this chapter, we’ll see how to build the list and bio-
box, how to repopulate the list when the user selects new data (with
the menu bar filters), and how to make the list clickable. We’ll also
see how an AJAX call to our Eve API is used to get the biography
data needed to update the bio-box (see “Delivering Data to the
Nobel Prize Visualization” on page 348).

Figure 19-1. The chapter’s target elements

483

1 We’ll cover selection boxes (as data filters) in Chapter 20.

As this chapter will demonstrate, D3 isn’t just for building SVG visu‐
alizations. You can bind data to any DOM element and use it to
change its attributes and properties or its event-handling callback
functions. D3’s data joining and event handling (achieved via the on
method) play very well with common user interfaces such as the
clickable list of this chapter and selection boxes.1

Let’s deal first with the list of winners and how it is built with the
dataset of currently selected winners.

Building the List
We build our list of winners (see Figure 19-1) using an HTML table
with Year, Category, and Name columns. The basic skeleton of this
list is provided in the Nobel-viz’s index.html file:

<!DOCTYPE html>
<meta charset="utf-8">
<body>
...
 <div id="nobel-list">
 <h2>Selected winners</h2>
 <table>
 <thead>
 <tr>
 <th id='year'>Year</th>
 <th id='category'>Category</th>
 <th id='name'>Name</th>
 </tr>
 </thead>
 <tbody>
 </tbody>
 </table>
 </div>
...
</body>

We’ll use a little CSS in style.css to style this table, adjusting the
width of the columns and their font size:

/* WINNERS LIST */
#nobel-list { overflow: scroll; overflow-x: hidden; }

#nobel-list table{ font-size: 10px; }
#nobel-list table th#year { width: 30px }

484 | Chapter 19: Visualizing Individual Winners

#nobel-list table th#category { width: 120px }
#nobel-list table th#name { width: 120px }

#nobel-list h2 { font-size: 14px; margin: 4px;
text-align: center }

overflow: scroll clips the content of the list (keeping it within
our nobel-list container) and adds a scroll bar so we can
access all the winners. overflow-x: hidden inhibits the addi‐
tion of a horizontal scroll bar.

In order to create the list, we will add <tr> row elements (containing
a <td> data tag for each column) to the table’s <tbody> element for
each winner in the current dataset, producing something like this:

 ...
 <tbody>
 <tr>
 <td>2014</td>
 <td>Chemistry</td>
 <td>Eric Betzig</td
 </tr>
 ...
 </tbody>
 ...

To create these rows, an updateList method will be called by our
central onDataChange when the app is initialized and subsequently
when the user applies a data filter and the list of winners changes
(see “Basic Data Flow” on page 384). The data received by updateL
ist will have the following structure:

// data =
[{
 name:"C\u00e9sar Milstein",
 category:"Physiology or Medicine",
 gender:"male",
 country:"Argentina",
 year: 1984
 _id: "5693be6c26a7113f2cc0b3f4"
 },
 ...
]

Example 19-1 shows the updateList method. The data received is
first sorted by year and then, after any existing rows have been
removed, used to build the table rows.

Building the List | 485

Example 19-1. Building the selected winners list

 nbviz.updateList = function(data) {

 var rows, cells;
 // Sort the winners' data by year
 var data = data.sort(function(a, b) {
 return +b.year - +a.year;
 });
 // Bind our winner's data to the table rows
 rows = d3.select('#nobel-list tbody')
 .selectAll('tr')
 .data(data);

 rows.enter().append('tr')
 .on('click', function(d) {
 console.log('You clicked a row ' + JSON.stringify(d));
 nbviz.displayWinner(d);
 });
 // Fade out excess rows over 2 seconds
 rows.exit()
 .transition().duration(nbviz.TRANS_DURATION)
 .style('opacity', 0)
 .remove();

 cells = rows.selectAll('td')
 .data(function(d) {
 return [d.year, d.category, d.name];
 });

 // Append data cells, then set their property text
 cells = cells.enter().append('td');
 cells.text(function(d) {
 return d;
 });

 // Display a random winner if there is one or more
 if(data.length){
 nbviz.displayWinner(
 data[Math.floor(Math.random() * data.length)]);
 }
 };

Appends any necessary row tags and adds a callback function
for when the user clicks a row.

When the user clicks on a row, this click-handler function will
pass the winner data bound to that row to a displayWinner
method, which will update the bio-box accordingly.

486 | Chapter 19: Visualizing Individual Winners

Here we bind an array containing year, category, and name of
the winner to the row’s data cells. In the next statement, we
enter this data and create the cell tags.

Each time the data is changed, we select a winner at random
from the new dataset and display him or her in the bio-box.

As the user moves the cursor over a row in our winners’ table, we
want to highlight the row and also to change the style of pointer to
cursor to indicate that the row is clickable. Both of these details are
fixed by the following CSS, added to our style.css file:

#nobel-list tr:hover{
 cursor: pointer;
 background: lightblue;
}

Our updateList method calls a displayWinner method to build a
winner’s biography box when a row is clicked or when the data
changes (with a random choice). Let’s now see how the bio-box is
built, using an AJAX request for data from our Eve API.

Building the Bio-Box
The bio-box receives a winner object missing the mini_bio field. In
order to get the biographical text needed, it makes a request to our
data API using the winner’s id to specify the resource required. This
data is used to update an HTML skeleton.

The bio-box’s HTML skeleton is provided in the index.html file con‐
sisting of content blocks for the biographical elements and a read
more footer providing a Wikipedia link to further information on
the winner:

<!DOCTYPE html>
<meta charset="utf-8">
<body>
...
 <div id="nobel-winner">
 <div id="picbox"></div>
 <div id='winner-title'></div>
 <div id='infobox'>
 <div class='property'>
 <div class='label'>Category</div>

 </div>

Building the Bio-Box | 487

 <div class='property'>
 <div class='label'>Year</div>

 </div>
 <div class='property'>
 <div class='label'>Country</div>

 </div>
 </div>
 <div id='biobox'></div>
 <div id='readmore'>
 Read more at Wikipedia</div>
 </div>
...
</body>

A little CSS in style.css sets the positions of the list and bio-box ele‐
ments, sizes their content blocks, and provides borders and font
specifics:

/* WINNER INFOBOX */

#nobel-winner {
 font-size: 11px;
 overflow: auto;
 overflow-x: hidden;
 border-top: 4px solid;
}

#nobel-winner #winner-title {
 font-size: 12px;
 text-align: center;
 padding: 2px;
 font-weight: bold;
}

#nobel-winner #infobox .label {
 display: inline-block;
 width: 60px;
 font-weight: bold;
}

#nobel-winner #biobox { font-size: 11px; }
#nobel-winner #biobox p { text-align: justify; }

#nobel-winner #picbox {
 float: right;
 margin-left: 5px;
}
#nobel-winner #picbox img { width:100px; }

488 | Chapter 19: Visualizing Individual Winners

#nobel-winner #readmore {
 font-weight: bold;
 text-align: center;
}

With our content blocks in place, we need to make a callback to our
data API to get the data needed to fill them. Example 19-2 shows the
displayWinner method used to build the box. The id (a MongoDB
id) field of _wData is used to create a resource string that will be used
by our getDataFromAPI method to make an AJAX call back to the
data server (see Example 15-4 for details). The response from this
call is passed to an anonymous callback function as wData and used
to build the box with D3.

Example 19-2. Updating a selected winner’s biography box

 nbviz.displayWinner = function(_wData) {

 nbviz.getDataFromAPI('winners/' + _wData._id, {},
 function(error, wData) {

 if(error){
 return console.warn(error);
 }

 var nw = d3.select('#nobel-winner');
 nw.style('border-color',
 nbviz.categoryFill(wData.category));

 nw.select('#winner-title').text(wData.name);

 nw.selectAll('.property span')
 .text(function(d) {
 var property = d3.select(this).attr('name');
 return wData[property];
 });

 // Add the biographic HTML
 nw.select('#biobox').html(wData.mini_bio);
 // Add an image if available or hide the old one
 if(wData.bio_image){
 nw.select('#picbox img')
 .attr('src', 'static/images/winners/'
 + wData.bio_image)
 .style('display', 'inline');

 }
 else{

Building the Bio-Box | 489

 nw.select('#picbox img').style('display', 'none');
 }

 nw.select('#readmore a').attr('href',
 'http://en.wikipedia.org/wiki/' + wData.name);
 } // End anonymous function
);
 };

Creates a resource string using the winner object’s MongoDB id.
We pass an empty query object {} to get the full resource. This
will include the mini_bio field, containing the biographical
body text. The response is passed to an anonymous function as
a wData object.

Our nobel-winner element has a top border (CSS: border-top:
4px solid), which we will color according to the winner’s cate‐
gory, using the categoryFill method defined in nbviz_core.js.

We select the tags of all the divs with class property.
These are of the form . We use
the span’s name attribute to retrieve the correct property from
our Nobel winner’s data and use it to set the tag’s text.

Here we set the src (source) attribute on our winner’s image if
one is available. We use the image tag’s display attribute to hide
it (setting it to none) if no image is available or show it (the
default inline) if one is.

Now that we’ve seen how we add a bit of personality to our Nobel-
viz by allowing users to display a winner’s biography, let’s summarize
this chapter before moving on to see how the menu bar is built.

Summary
In this chapter, we saw how D3 can be used to build conventional
HTML constructions, not just SVG graphics. D3 is just as at home
building lists, tables, and the like as it is displaying circles or chang‐
ing the rotation of a line. Wherever there is changing data that needs
to be reflected by elements of a web page, D3 is likely able to solve
the problem elegantly and efficiently.

490 | Chapter 19: Visualizing Individual Winners

We saw how an AJAX call to our RESTful Eve API was used to get
the biographical text necessary for an individual’s bio-box. Although
our visualization deals with a relatively small dataset, the ability to
grab multivariate dynamic data on demand, driven by the users and
their interests, is crucial as data visualizations get more ambitious
and caching all the data required becomes unfeasible.

With our winners’ list and biography box covered, we’ve seen how
all the visual elements in our Nobel-viz are built. It only remains to
see how the visualization’s menu bar is built and how the changes it
enables, to both the dataset and the measure of prizes, are reflected
by these visual elements.

Summary | 491

1 Remarkably, Marie Curie and her daughter Irène Joliot-Curie hold this distinction.

CHAPTER 20

The Menu Bar

The previous chapters showed how to build the visual components
of our interactive Nobel Prize visualization, the time chart to display
all Nobel Prize winners by year, a map to show geographic distribu‐
tions, a list to display the currently selected winners, and a bar chart
to compare absolute and per capita wins by country. In this chapter,
we will see how the user interacts with the visualization by using
selectors and buttons (see Figure 20-1) to create a filtered dataset
that is then reflected by the visual components. For example, select‐
ing Physics in the category-select box filters will display only Physics
prize winners in the Nobel Prize visualization (Nobel-viz) elements.
The filters in our menu bar are cumulative, so we can, for example,
select only those female chemists from France to have won the
Nobel Prize.1

Figure 20-1. This chapter’s target menu bar

493

In the sections ahead, I will show you how to use D3 to build the
menu bar and how JavaScript callbacks are used to respond to user-
driven changes.

Creating HTML Elements with D3
Many people think of D3 as a specialized tool for creating SVG visu‐
alizations composed of graphical primitives such as lines and circles.
Though D3 is great for this (the best there is), it’s equally at home
creating conventional HTML elements such as tables or selector
boxes. For tricky, data-driven HTML complexes like hierarchical
menus, D3’s nested data-joins are an ideal way to create the DOM
elements and the callbacks to deal with user selections.

We saw in Chapter 19 how easy it is to create table rows from a
selected dataset or fill in the details of a biography box with a win‐
ner’s data. In this chapter, we’ll show how to populate selectors with
options based on changing datasets and how to attach callback func‐
tions to user interface elements such as selectors and radio boxes.

If you have stable HTML elements (e.g., a select
box whose options are not dependent on chang‐
ing data), it’s best to write them in HTML and
then use D3 to attach any callback functions you
need to deal with user input. As with CSS styl‐
ing, you should do as much as possible in vanilla
HTML. It keeps the code base cleaner and is eas‐
ier to understand by others devs and non devs.
In this chapter I stretch this rule a bit to demon‐
strate the creation of HTML elements, but it’s
pretty much always the way to go.

Building the Menu Bar
As discussed in “The HTML Skeleton” on page 374, our Nobel-viz is
built on HTML <div> placeholders, fleshed out with JavaScript and
D3. As shown in Example 20-1, our menu bar is built on the nobel-
menu <div>, placed above the main chart holder, and consists of
three selector filters (by the winners’ category, gender, and country)
and a couple of radio buttons to select the country prize-winning
metric (absolute or per capita).

494 | Chapter 20: The Menu Bar

Example 20-1. The HTML skeleton for the menu bar

<!-- ... -->
<body>
<!-- ... -->
 <!-- THE PLACEHOLDERS FOR OUR VISUAL COMPONENTS -->
 <div id="nbviz">
 <!-- BEGIN MENU BAR -->
 <div id="nobel-menu">
 <div id="cat-select">
 Category
 <select></select>
 </div>
 <div id="gender-select">
 Gender
 <select>
 <option value="All">All</option>
 <option value="female">Female</option>
 <option value="male">Male</option>
 </select>
 </div>
 <div id="country-select">
 Country
 <select></select>
 </div>
 <div id='metric-radio'>
 Number of Winners:
 <form>
 <label>absolute
 <input type="radio" name="mode" value="0" checked>
 </label>
 <label>per-capita
 <input type="radio" name="mode" value="1">
 </label>
 </form>
 </div>
 </div>
 <!-- END MENU BAR -->
 <div id='chart-holder'>
<!-- ... -->
</body>

Now we’ll add the UI elements in turn, starting with the selector
filters.

Building the Category Selector
In order to build the category selector, we’re going to need a list of
option strings. Let’s create that list using the CATEGORIES list defined
in nbviz_core.js:

Building the Menu Bar | 495

/* nbviz_menu.js */
/* global $, _, crossfilter, d3 */
(function(nbviz, _, $) {
 'use strict';

 var catList = [nbviz.ALL_CATS].concat(nbviz.CATEGORIES);

Creates the category selector’s list ['All Categories', 'Chem
istry', 'Economics', …] by concatenating the list ['All
Categories'] and the list ['Chemistry', 'Economics', …].

We’re now going to use this category list to make the options tags.
We’ll first use D3 to grab the #cat-select select tag:

//...
 var catSelect = d3.select('#cat-select select');

With catSelect to hand, let’s use some standard D3 data binding to
turn our catList list of categories into HTML option tags:

catSelect.selectAll('option')
 .data(catList).enter()
 .append('option')
 .attr('value', function(d) { return d; })
 .html(function(d) { return d; });

After data binding, append an option for each catList

member.

We are setting the option’s value attribute and text to a cate‐
gory (e.g., <option value="Peace">Peace</option>).

The result of the preceding append operations is the following cat-
select DOM element:

<div id="cat-select">
 "Category "
 <select>
 <option value="All Categories">All Categories</option>
 <option value="Chemistry">Chemistry</option>
 <option value="Economics">Economics</option>
 <option value="Literature">Literature</option>
 <option value="Peace">Peace</option>
 <option value="Physics">Physics</option>
 <option value="Physiology or Medicine">
 Physiology or Medicine</option>
 </select>
</div>

496 | Chapter 20: The Menu Bar

2 Defined in the nbviz_core.js script.

Now that we have our selector, we can use D3’s on method to attach
an event-handler callback function, triggered when the selector is
changed:

catSelect.on('change', function(d) {
 var category = d3.select(this).property('value');
 nbviz.filterByCategory(category);
 nbviz.onDataChange();
 });

this is the select tag, with the value property as the selected
category option.

We call the filterByCategory method defined in nbviz_core.js
to filter our dataset for prizes in the category selected.

onDataChange triggers the visual-component update methods
that will change to reflect our newly filtered dataset.

Figure 20-2 is a schematic of our select callback. Selecting Physics
calls the anonymous callback function attached to our selector’s
change event. This function initiates the update of the Nobel-viz’s
visual elements.

Figure 20-2. The category select callback

Within the category selector’s callback, we first call the filterByCa
tegory method2 to select only the Physics winners and the onData

Building the Menu Bar | 497

Change method to trigger an update of all the visual components.
Where applicable, these will reflect the changed data. For example,
the map’s distribution circular indicators will resize, vanishing in the
case of countries with no Nobel Physics winners.

Adding the Gender Selector
We have already added the HTML for our gender selector and its
options, in the menu bar’s description in index.html:

<!-- ... -->
 <div id="gender-select">
 Gender
 <select>
 <option value="All">All</option>
 <option value="female">Female</option>
 <option value="male">Male</option>
 </select>
 </div>
<!-- ... -->

All we need now do is select the gender select tag and add a call‐
back function to handle user selections. We can easily achieve this
using D3’s on method:

 d3.select('#gender-select select')
 .on('change', function(d) {
 var gender = d3.select(this).property('value');
 if(gender === 'All'){
 nbviz.genderDim.filter();
 }
 else{
 nbviz.genderDim.filter(gender);
 }
 nbviz.onDataChange();
 });

Calling the gender dimension’s filter without an argument resets
it to allow all genders.

First we select the selector’s option value. We then use this value to
filter the current dataset. Finally, we call onDataChange to trigger any
changes to the Nobel-viz’s visual components caused by the new
dataset.

To place the gender select tag, we use a little CSS, giving it a left
margin of 20 pixels:

#gender-select{margin-left:20px;}

498 | Chapter 20: The Menu Bar

3 It does show that among single winners, the Nobel Prize for Peace predominates, fol‐
lowed by literature.

Adding the Country Selector
Adding the country selector is a little more involved than adding
those of category and gender. The distribution of Nobel Prizes by
country has a long tail (see Figure 16-1), with lots of countries hav‐
ing one or two prizes. We could include all of these in our selector,
but it would make it rather long and cumbersome. A better way is to
add groups for the single- and double-winning countries, keeping
the number of select options manageable and adding a little narra‐
tive to the chart, namely the distributions of small winners over
time, which might conceivably say something about changing trends
in the Nobel Prize award allocation.3

In order to add our single- and double-country winner groups, we
will need the crossfiltered country dimension to get the group sizes
by country. This means creating the country selector after our Nobel
Prize dataset has loaded. To do this, we put it in an nbviz.initUI
method, called in our main nbviz_main.js script after the crossfilter
dimensions have been created (see “Filtering Data with Crossfilter”
on page 392).

The following code creates a selection list. Countries with three or
more winners get their own selection slot, below the All Winners
selection. Single- and double-country winners are added to their
respective lists, which will be used to filter the dataset if the user
selects the Single Winning Countries or Double Winning Countries
from the selector’s options.

nbviz.initUI = function() {
 var ALL_WINNERS = 'All Winners';
 var SINGLE_WINNERS = 'Single Winning Countries';
 var DOUBLE_WINNERS = 'Double Winning Countries';

 var nats = nbviz.countrySelectGroups = nbviz.countryDim
 .group().all()
 .sort(function(a, b) {
 return b.value - a.value; // descending
 });

 var fewWinners = {1:[], 2:[]};
 var selectData = [ALL_WINNERS];

Building the Menu Bar | 499

 nats.forEach(function(o) {
 if(o.value >= 3){
 selectData.push(o.key);
 }
 else{
 fewWinners[o.value].push(o.key);
 }
 });

 selectData.push(
 DOUBLE_WINNERS,
 SINGLE_WINNERS
);

Sorted group array of form ({key:"United States", value:
336}, …) where value is the number of winners from that
country.

An object with lists to store single and double winners.

Countries with more than two winners get their own slot in the
selectData list.

Single- and double-winning countries are added to their respec‐
tive lists based on the group size (value) of 1 or 2.

Now that we have our selectData list with corresponding fewWin
ners arrays, we can use it to create the options for our country selec‐
tor. We first use D3 to grab the country selector’s select tag and
then add the options to it using standard data binding:

var countrySelect = d3.select('#country-select select');

countrySelect.selectAll('option')
 .data(selectData).enter()
 .append('option')
 .attr('value', function(d) { return d; })
 .html(function(d){ return d; });

With our selectData options appended, the selector looks like
Figure 20-3.

500 | Chapter 20: The Menu Bar

Figure 20-3. Selector for prizes by country

Now all we need is a callback function, triggered when an option is
selected, to filter our main dataset by country. The following code
shows how it’s done. First we get the select’s value property (1), a
country or one of ALL_WINNERS, DOUBLE_WINNERS, or SINGLE_WIN
NERS. We then construct a list of countries to send to our national
filter method, nbviz.filterByCountries (defined in nbviz_core.js).

countrySelect.on('change', function(d) {

 var countries;
 var country = d3.select(this).property('value');

 if(country === ALL_WINNERS){
 countries = [];
 }
 else if(country === DOUBLE_WINNERS){
 countries = fewWinners[2];
 }
 else if(country === SINGLE_WINNERS){
 countries = fewWinners[1];
 }
 else{
 countries = [country];
 }

 nbviz.filterByCountries(countries);
 nbviz.onDataChange();
 });

Building the Menu Bar | 501

These conditionals make a countries array, depending on the
country string. This array is empty, single-valued, or with one
of fewWinners arrays.

Calls filterByCountries to filter our main Nobel-winners
dataset using the array of countries.

Triggers an update to all the Nobel-viz’s elements.

The filterByCountries function is shown in Example 20-2. An
empty countryNames argument resets the filter; otherwise, we filter
the country dimension countryDim for all those countries in coun
tryNames .

Example 20-2. Filter by countries function

nbviz.filterByCountries = function(countryNames) {

 if(!countryNames.length){
 nbviz.countryDim.filter();
 }
 else{
 nbviz.countryDim.filter(function(name) {
 return countryNames.indexOf(name) > -1;
 });
 }

 if(countryNames.length === 1){
 nbviz.activeCountry = countryNames[0];
 }
 else{
 nbviz.activeCountry = null;
 }
};

Resets the filter if the countryNames array is empty (the user
chose All Countries).

Here, we create a filter function on our crossfilter country
dimension, which returns true if a country is in the country
Names list (containing either a single country or all single or
double winners).

Keeps a record of any single selected country in order—for
example, to highlight it in the map and bar chart.

502 | Chapter 20: The Menu Bar

Now that we’ve built the filter selectors for our category, gender, and
country dimensions, all we need to do is add the callback function
to deal with changes to the prize-winning metric radio button.

Wiring Up the Metric Radio Button
The metric radio button has already been built in HTML, consisting
of a form with radio inputs:

 <div id='metric-radio'>
 Number of Winners:
 <form>
 <label>absolute
 <input
 type="radio" name="mode" value="0" checked>
 </label>
 <label>per-capita
 <input type="radio" name="mode" value="1">
 </label>
 </form>
 </div>

 is used to create a nonbreaking space between the form
and its label.

Inputs of type radio sharing the same name (mode, in this case)
are grouped together, and activating one deactivates all others.
They are differentiated by value (0 and 1 in this case). Here we
use the checked attribute to activate value 0 initially.

With the radio button form in place, we need only select all its
inputs and add a callback function to deal with any button presses
triggering a change:

d3.selectAll('#metric-radio input').on('change', function() {
 var val = d3.select(this).property('value');
 nbviz.valuePerCapita = parseInt(val);
 nbviz.onDataChange();
 });

Update the value of valuePerCapita before calling onData
Change and triggering a redraw of the visual elements.

We are storing the current state of the button with our valuePerCa
pita integer. When the user selects a radio box, this value is
changed and a redraw with the new metric is triggered with onData
Change.

Building the Menu Bar | 503

4 There are also native sliders in HTML5, where before one relied on jQuery plugins.

We now have the menu bar elements to our Nobel-viz, allowing
users to refine the displayed dataset and drill down to subsets they
are most curious about.

Summary
In this chapter, we saw how to add selectors and radio-button ele‐
ments to our Nobel Prize visualization. There are a number of other
user interface HTML tags, such as button groups, groups of check‐
boxes, time pickers, and plain buttons.4 But implementing these
controllers involves the same patterns as shown in this chapter. A
list of data is used to append and insert DOM elements, setting
properties where appropriate, and callback functions are bound to
any change events. This is a very powerful method that plays very
well with such D3 (and JS) idioms as method chaining and anony‐
mous functions. It will quickly become a very natural part of your
D3 workflow.

504 | Chapter 20: The Menu Bar

CHAPTER 21

Conclusion

Although this book had a guiding narrative—the transformation of
some basic Wikipedia HTML pages into a modern, interactive Java‐
Script web visualization—it is meant to be dipped into as and when
required. The different parts are self-contained, allowing for the
existence of the dataset in its various stages, and can be used inde‐
pendently. Let’s have a short recap of what was covered before mov‐
ing on to a few ideas for future visualization work.

Recap
This book was divided into five parts. The first part introduced a
basic Python and JavaScript dataviz toolkit, while the next four
showed how to retrieve raw data, clean it, explore it, and finally
transform it into a modern web visualization. This process of refine‐
ment and transformation used as its backbone a dataviz challenge:
to take a fairly basic Wikipedia Nobel Prize list and transform the
dataset contained into something more engaging and informative.
Let’s summarize the key lessons of each part now.

Part I, Basic Toolkit
Our basic toolkit consisted of:

• A language-learning bridge between Python and JavaScript.
This was designed to smooth the transition between the two
languages, highlighting their many similarities and setting the
scene for the bilingual process of modern dataviz. With the

505

advent of a the latest JavaScript, based on ECMAScript 2015
(sixth edition) and soon to be available on all browsers, Python
and JavaScript share even more in common, making switching
between them that much less stressful.

• Being able to read from and write to the key data formats (e.g.,
JSON and CSV) and databases (both SQL and NoSQL) with
ease is one of Python’s great strengths. We saw how easy it is to
pass data around in Python, translating formats and changing
databases as we go. This fluid movement of data is the main
lubricant of any dataviz toolchain.

• We covered the basic web development (webdev) skills needed
to start producing modern, interactive, browser-based dataviz.
By focusing on the concept of the single-page application rather
than building whole websites, we minimize conventional web‐
dev and place the emphasis on programming your visual crea‐
tions in JavaScript. An introduction to Scalable Vector Graphics
(SVG), the chief building block of D3 visualizations, set the
scene for the creation of our Nobel Prize visualization in Part V.

Part II, Getting Your Data
In this part of the book, we looked at how to get data from the Web
using Python, assuming a nice, clean data file hasn’t been provided
to the data visualizer:

• If you’re lucky, a clean file in an easily usable data format (i.e.,
JSON or CSV) is at an open URL, a simple HTTP request away.
Alternatively, there may be a dedicated web API for your data‐
set, with any luck a RESTful one. As an example, we looked at
using the Twitter API (via Python’s Tweepy library). We also
saw how to use Google spreadsheets, a widely used data sharing
resource in dataviz.

• Things get more involved when the data of interest is present on
the Web in human-readable form, often in HTML tables, lists,
or hierarchical content blocks. In this case, you have to resort to
scraping, getting the raw HTML content and then using a parser
to make its embedded content available. We saw how to use
Python’s lightweight BeautifulSoup scraping library and the

506 | Chapter 21: Conclusion

http://www.ecma-international.org/ecma-262/6.0/
http://www.ecma-international.org/ecma-262/6.0/
https://en.wikipedia.org/wiki/Single-page_application

much more featureful and heavyweight Scrapy, the biggest star
in the Python scraping firmament.

Part III, Cleaning and Exploring Data with Pandas
In this part, we turned the big guns of Pandas, Python’s powerful
programmatic spreadsheet, on the problem of cleaning and then
exploring datasets. We first saw how Pandas is part of Python’s
NumPy ecosystem, leveraging the power of very fast, powerful low-
level array processing libraries but making them accessible. The
focus was on using Pandas to clean and then explore our Nobel
Prize dataset:

• Most data, even that which comes from official web APIs, is
dirty. And making it clean and usable will occupy far more of
your time as a data visualizer than you probably anticipated.
Taking the Nobel dataset as an example, we progressively
cleaned it, searching for dodgy dates, anomalous datatypes,
missing fields, and all the common grime that needs cleaning
before you can start to explore and then transform your data
into a visualization.

• With our clean (as we could make it) Nobel Prize dataset in
hand, we saw how easy it is to use Pandas and Matplotlib to
interactively explore data, easily creating inline charts, slicing
the data every which way, and generally getting a feel for it,
looking for those interesting nuggets you want to deliver with
visualization.

Part IV, Delivering the Data
In this part, we saw how easy it is to create a minimal data API using
Flask, to deliver data both statically and dynamically to the web
browser:

• First we saw how to use Flask to serve static files and then how
to roll your own basic RESTful API, serving data from a local
database. Flask’s minimalism allows you to create a very thin
data-serving layer between the fruits of your Python data pro‐
cessing and their eventual visualization on the browser.

Recap | 507

• The glory of open source software is that you can often find
robust, easy-to-use libraries that solve your problem better than
you could. Two Flask-based RESTful APIs were demonstrated
that let you serve your data for the price of a small configuration
file. Python Eve is a great MongoDB-based RESTful API library,
while Flask-Restless makes serving data from SQL databases
easy.

Part V, Visualizing Your Data with D3
I think it’s fair to say that this was an ambitious part, but I was deter‐
mined to demonstrate the construction of a multi-element visualiza‐
tion, such as the kind you may well end up being employed to make.
One of the joys of D3 is the huge number of examples that can easily
be found online, but most of them demonstrate a single technique
and there are few showing how to orchestrate multiple visual ele‐
ments. In these D3 chapters, we saw how to synchronize the update
of a timeline (featuring all the Nobel Prizes), a map, a bar chart, and
a list as the user filtered the Nobel Prize dataset or changed the
prize-winning metric (absolute or per capita).

Data for the Nobel Prize visualization was provided as both static
files and through a RESTful API, courtesy of Python Eve and Flask.
The methods shown should scale for much larger datasets. Once you
have mastered retrieving data dynamically from an API, the sky’s
the limit in terms of the amount of data you can use to drive your
visualization.

Mastery of the core themes demonstrated in these chapters should
allow you to let loose your imagination and learn by doing. I’d rec‐
ommend choosing some data close to your heart and designing a D3
creation around it.

Future Progress
As mentioned, the Python and JavaScript data processing and visu‐
alization ecosystems are incredibly active right now and are building
from a very solid base.

While the business of acquiring and cleaning datasets learned in
Part II and Chapter 9 improves incrementally, getting a lot easier as
your craft skills (e.g., your Pandas fu) improve, Python is throwing

508 | Chapter 21: Conclusion

http://bit.ly/1ZWYnAC

out new and powerful data processing tools with abandon. There’s a
fairly comprehensive list at the Python wiki. Here are a few ideas
you might want to use to create some visualizations.

Visualizing Social Media Networks
The advent of social media has provided a huge amount of interest‐
ing data, often available from a web API or eminently scrapeable.
There are also curated collections of social media data such as Stan‐
ford’s Large Network Dataset Collection or the UCIrvine collection.
These datasets can provide an easy testing ground for adventures in
network visualization, an increasingly popular area.

The two most popular Python libraries for network analysis are
Graph-tool and NetworkX. While Graph-tool is more heavily opti‐
mized, NetworkX is arguably more user-friendly. Both libraries pro‐
duce graphs in the common GraphML and GML formats.
NetworkX can also produce a variety of JSON formats, which play
well with D3’s force layouts. There’s a nice, integral example on the
NetworkX website of turning a NetworkX graph into a D3 visualiza‐
tion. There’s a handy Gist from Anders Eriksen showing how to
convert GraphML format to a D3-ready JSON for force-directed
layouts. There’s also a handy tool from Keiichiro Ono, which allows
you to convert GraphML and GML to D3-ready JSON.

As well as the examples at its website, there’s a nice introduction to
NetworkX at Udacity. For a nice case study showing NetworkX and
D3 in action, Lynn Cherny’s quick and dirty intro is a great starting
point.

Interactive Mapping with Leaflet and Folium
In Chapter 18 you were introduced to D3’s impressive mapping abil‐
ities. D3 maps are supremely adaptable and, as with most things D3,
you can achieve pretty much any effect you want. The huge number
of geometric projections provided really broaden the scope of map
visualizations. JavaScript’s very popular Leaflet library offers a faster
route to mobile-friendly interactive maps. It doesn’t have the low-
level customization D3 offers, but you do get a lot of functionality
for free, including pop-ups, zooming, integration with map data‐
bases such as Openstreetmap, and more. Leaflet has a huge range of
plugins to extend its basic functionality, which testifies to its large
and enthusiastic user base. Leaflet plays nicely with D3 so you can

Future Progress | 509

https://wiki.python.org/moin/NumericAndScientific
https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
https://networkdata.ics.uci.edu/resources.php
https://graph-tool.skewed.de/
https://networkx.github.io/
http://graphml.graphdrawing.org/
http://bit.ly/1S9TRIW
http://bit.ly/1UEG5je
http://bit.ly/1PyKnam
http://bit.ly/1PyKnam
http://bit.ly/1rtGiy3
http://bit.ly/1ZX2ooH
http://bit.ly/1tANSsE
http://bit.ly/1UThGJx
http://leafletjs.com/
https://www.openstreetmap.org/#map=5/51.500/-0.100
http://leafletjs.com/plugins.html
http://leafletjs.com/plugins.html

combine the latter’s data binding strengths with the former’s conve‐
nience. There are a few nice examples at bl.ocks.org such as this
overlaying example and Mike Bostock’s original demonstration.

Python’s Folium library provides a great way to combine the
strength of Python’s data-processing ecosystem with Leaflet’s easy
browser-based mapping. As well as binding data to maps based on
tilesets (OpenStreetMap by default), Folium can output the results
of your Python analysis as visual markers using Vega, a popular
JSON-based visualization grammar that can be used to create inter‐
active visualizations in the browser (as well as other platforms). It
does this using Vincent, a Python-to-Vega translator that is designed
to play nicely with Python data structures (lists, dicts, etc.) and also
Pandas DataFrames.

There is a huge scope for geographic visualizations, and maps do
tend to engage people’s attention. Many social media datasets, such
as Twitter’s tweets (see “Using the Twitter API with Tweepy” on
page 141 to see how Python can harvest tweets), have geo-tagged
data or some clue (place of origin of sender) from which the geo‐
graphic location can be fairly reliably derived. We saw that sites like
flightaware provide a paid API providing international flight track‐
ing, and there are free resources such as openflights providing cura‐
ted datasets of flight routes and airports.

Machine-Learning Visualizations
Machine learning is more than a little in vogue at the moment and
Python offers a fantastic set of tools to allow you to start analyzing
and mining your data with a huge range of algorithms, from the
supervised to unsupervised, from basic regression algorithms (such
as linear or logistic regression) to more esoteric, cutting-edge stuff
like the family of Ensemble Algorithms such as Random Forest. See
this nice tour of the different flavors of algorithm.

Premier among Python’s machine-learning stable is Scikit-learn,
which is part of the NumPy ecosystem, also building on SciPy and
Matplotlib. Scikit-learn provides an amazing resource for efficient
data mining and data analysis. Algorithms that only a few years back
would have taken days or weeks to craft are available with a single
import, well designed, easy to use, and able to get useful results in a
few lines of code.

510 | Chapter 21: Conclusion

http://bl.ocks.org/d3noob/9267535
https://bost.ocks.org/mike/leaflet/
https://folium.readthedocs.org/en/latest/
https://vega.github.io/vega/
https://vincent.readthedocs.org/en/latest/
http://uk.flightaware.com/commercial/flightxml/
http://openflights.org/data.html
http://bit.ly/1YynBq6
http://scikit-learn.org/stable/tutorial/basic/tutorial.html

Tools like Scikit-learn enable you to discover deep correlations in
your data, if they exist. There’s a nice demonstration at r2d3 that
both introduces some machine-learning techniques and uses D3 to
visualize the process and results. It’s a great example of the creative
freedom mastery that D3 provides and the way in which good web
dataviz is pushing the boundaries, making novel visualizations that
engage in a way that hasn’t been possible before—and, of course, are
available to everybody.

There’s a great collection of IPython (Jupyter) Notebooks for statis‐
tics, machine learning, and data science at the IPython GitHub repo.
Many of these demonstrate visualization techniques that can be
adapted and extended in your own works.

Final Thoughts
The suggestions in the previous section just scratch the surface of
where you might take your new Python and JavaScript dataviz skills.
Hopefully this book has provided a solid bedrock on which to build
your web dataviz efforts for the many jobs now opening up in the
field or just to scratch a personal itch. The ability to harness Python’s
immensely powerful data wrangling and general-purpose abilities to
JavaScript’s (D3 being prominent here) increasingly powerful and
mature visualization libraries represents the richest dataviz stack I
know. Skills in this area are already very bankable, but the pace of
change and scale of interest is increasing at a rapid rate. I hope you
find this exciting and emergent field as fulfilling as I do.

Final Thoughts | 511

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
http://bit.ly/1YynF9k

APPENDIX A

Moving from Development
to Production

In this appendix, we’ll skim the surface of some big subjects and
hopefully provide a good starting point and some sensible directions
to follow. How far you need to develop these skills will depend on
the scope of your job or projects. Hopefully you won’t be required to
extend your authentication or deployment skills too far, or you’ll
quickly find yourself doing more webdev and systems admin than
dataviz. But testing is a generic programming skill for life and you
probably want to be strengthening that core as you go. Decent
project configuration skills are a very dependable asset, too. Using
the following sections, I’d recommend taking your first Flask app
with JavaScript project and making sure you can serve it on Apache
with basic authentication, some unit tests, and at least two configu‐
ration states (e.g., production and development).

In covering the webdev sections of this book, the aim has been to
give you a lightweight, pared-down starting point so that you can
learn anything else you require on a need-to-know basis. In this
sense, it’s been set in a development environment. Sometimes, if
you’re working on a fast and dirty prototype, you won’t need to stray
too far from your development setup. But often, out there in the real
world, you’ll be working on a project that demands different envi‐
ronments for development and production (and maybe one for tests
as well). Although both environments use testing, things like
authentication and deployment usually have an end user in sight.

513

In the following sections, I’ll give a brief overview of some of the key
things you should be aware of on a project when you’re moving to a
production environment, using our development Nobel Prize visu‐
alization (Nobel-viz) single-page app as a starting point.

The Starting Directory
Let’s remind ourselves of our Nobel-viz’s development files.
Example A-1 shows the basic Flask directory structure we’re starting
with. We also have an api subdirectory containing our Flask-based
Eve web API; this could be anywhere on your system or, as is often
the case, deployed to the cloud (see “Deploying Flask Apps” on page
531).

Example A-1. Our project’s file structure

nobel_viz
├── templates
│ └── index.html
├── notes.md
├── api
│ ├── server_eve.py
│ └── settings.py
├── nobel_viz.py
└── static
 ├── css
 │ └── style.css
 ├── data
 ├── images
 ├── js
 │ ├── nbviz_bar.js
 │ ├── ...
 └── lib
 ├── crossfilter.min.js

Our main Flask server, providing the entry point to our Nobel-
viz single-page app.

Our JavaScript files.

Configuration
As projects start to grow from the small-scale, prototyping phase,
they often start to need different configurations for development
and production (and testing, too, for that matter). These configura‐

514 | Appendix A: Moving from Development to Production

1 To set a environment variable in OS X or Linux, the export command should do the
trick (e.g., export ENV_NBIZ_SETTINGS='/path/to/settings_debug.cfg). In Win‐
dows, you usually do this using the set command, which will persist for the current
CMD session or with a menu option as described in this Stack Exchange thread.

tions may use different databases, web APIs, and URLs. You won’t
want to be doing development using the same database as your pro‐
duction server. Flask-based projects can take advantage of Flask’s
flexible configuration system to create these different environments.

Configuring Flask
You can configure Flask through the apps config object (essentially
a dictionary). This can be accessed through the Flask app created in
nobel_viz.py. Here, we set the DEBUG variable to True:

nobel_viz/nobel_viz.py
app = Flask(__name__)
app.config['DEBUG'] = True

Flask provides a number of ways to initialize the config instance.
For example, you can use an environment variable that points to the
location of a settings.cfg file:

// ENV_NBIZ_SETTINGS = / path / to / settings.cfg
app.config.from_envvar('ENV_NBVIZ_SETTINGS']

This .cfg config file is actually a Python file, which will be processed
to seed the config dictionary. Setting our configuration from an
environment variable means we only need to change the path it
defines to change our Flask setup. So setting ENV_NBIZ_SETTINGS to
point to settings_debug.cfg gives us a debug environment:1

settings_debug.cfg
Debug config
DEBUG = True
EVE_API = 'http://localhost:5000/api/'
...

Note that only fully uppercase variables will be used to create values
in config; everything else will be ignored.

The way I configure Flask is through the class-inheritance model,
which makes it easy to build from default settings. To do this we cre‐
ate a config.py file in our root directory with a Config class and its
subclasses:

Moving from Development to Production | 515

http://bit.ly/1YxqPKL

nobel_viz/config.py
class Config(object):
 DEBUG = False
 TESTING = False
 DATABASE_URI = 'sqlite://:memory:'
 EVE_API = 'http://localhost:5000/api/'

class ProductionConfig(Config):
 DATABASE_URI = 'mysql://user@localhost/prod_db'
 EVE_API = 'http://foo.com:5000/api/'

class DevelopmentConfig(Config):
 DEBUG = True

class TestingConfig(Config):
 TESTING = True

With this config file in the same directory as the Flask server file
(nobel_viz.py), you can update the app’s config from the required
class using its from_object method like so:

nobel_viz/nobel_viz.py
...
app.config.from_object('config.DevelopmentConfig')

So we could set our project’s configuration with an environment
variable and use Python’s os module to read it and configure accord‐
ingly. In OS X or Linux, we use the following command to set the
environment variable:

$ export NBVIZ_CONFIG=config.DevelopmentConfig

In Windows, we use set instead of export:

> set NBVIZ_CONFIG=config.DevelopmentConfig

To configure our project based on NBVIZ_CONFIG, we can use
Python’s os (operating system) module to get its value and use that
with the config.from_object method:

...
app = Flask(__name__)

import os

cfg_var = os.environ.get('NBVIZ_CONFIG')
if not cfg_var:
 raise RuntimeError('The environment variable NBVIZ_CONFIG'\
 ' is not set. Please set to enable configuration'
)

516 | Appendix A: Moving from Development to Production

2 We want to make sure this file isn’t available to a general web request.

app.config.from_object(cfg_var)
...

Now that we can configure our app by setting a single environment
variable, let’s see how we can pass configuration variables to the app.

Configuring the JavaScript App
There are a number of ways we can pass configuration settings to
our JavaScript app. We could initiate a web session and configure
based on user authentication (as described later in this appendix) or
use a configuration JSON file mirroring the current environments2

(e.g., production or development). One simple method, which suffi‐
ces for many jobs, is to use Flask’s templating system to pass vari‐
ables from Python to JavaScript. Let’s cover that now.

Although we have a templated index.html file, we haven’t up to now
been making use of Flask’s templating library, Jinja2 (see “Templat‐
ing with Jinja2” on page 325).

Let’s use a little template now to pass the configuration-dependent
address of our RESTful Eve API. This is defined in our Flask
config.py file:

config.py

class Config(object):
 #...
 EVE_API = 'http://localhost:5000/api/'

class ProductionConfig(Config):
 DATABASE_URI = 'mysql://user@localhost/prod_db'
 EVE_API = 'http://foo.com:5000/api/'

We’ll pass the value of EVE_API to JavaScript by using a little tem‐
plating to set a global $EVE_API variable in our index.html file,
declaring the variable before our Nobel-viz scripts:

<!-- index.html -->
...
 <script>
 $EVE_API = {{ config.EVE_API|tojson|safe }};
 </script>

Moving from Development to Production | 517

 <script src="static/js/nbviz_core.js" ></script>
 ...

The config object is available to templates. Here we pass the
EVE_API variable through a couple of filters to first convert it to
JSON representation, and then mark the value safe to send
through to HTML without escaping.

We can now use the $EVE_API variable in our getDataFromAPI
method to use different API addresses dependent on our Flask
configuration:

// nbviz_core.js
//...
// var API_URL = 'http://localhost:5000/api/';
nbviz.getDataFromAPI = function(resource, data, callback){
 $.getJSON($EVE_API + resource, data)
 .done(function(resp_data){
 //...

By using Jinja2’s tojson filter, you can pass whole dictionaries from
Python to JavaScript, allowing for as much configurability as you
need.

Using templates, we can alter aspects of the visualization on an envi‐
ronment (dev or prod) by environment basis. But what if we wished
to restrict use of our app to certain users or change the dataset
visualized according to individuals or members of a group. For
example, a dashboard may reveal specific information for adminis‐
trators that should be hidden from normal users. At this point, we
need to start dealing with the issues of user authentication.

Authentication
Often we want to limit access to a particular web page (in our case, a
visual single-page app) to particular users, or change the look and
feel based on the user’s status (e.g., a user versus admin view). Gen‐
erally this requires creating a login page through which users must
pass (with the correct password) before being delivered the right
visualization.

518 | Appendix A: Moving from Development to Production

3 Credentials for basic authentication are not encrypted or hashed in any way, making
HTTPS pretty much essential.

There are lots of ways for a website to authenticate users, from the
old but not particularly safe3 basic authentication to more modern
types such as OAuth, a not altogether successful attempt to impose
some open standards for authorization. As you’d expect, Flask offers
a number of plugins to provide authentication, the most popular of
which is Flask-login, which we’ll cover in brief now.

Before adding a login stage to our visualization, we need to install
Flask-login with a call to pip:

$ pip install flask-login

With Flask-login installed, the first thing you need to do is create a
login manager. We’ll add the login code to our nobel_viz.py module
for simplicity, but as authentication gets more involved it’s worth
parceling it off to a separate module. So, after declaring our Flask
app, we use it to initialize a login manager:

nobel_viz.py

...
import flask.ext.login as flask_login

app = Flask(__name__)
...
login_manager = flask_login.LoginManager()
login_manager.init_app(app)
login_manager.login_view = "login"

The login_view variable tells Flask-login where the login page
is, which in our case is at the address /login.

Now that we have our login manager, we need a little code for user
handling:

FOR DEMO ONLY!!! NEVER STORE PASSWORDS IN PLAIN TEXT
users = {'groucho': {'pw': 'swordfish'}}

class User(flask_login.UserMixin):
 pass

@login_manager.user_loader
def user_loader(name):

Moving from Development to Production | 519

https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/OAuth

 if name not in users: # only groucho may pass
 return

 user = User()
 user.id = name

We’ll use this little dictionary for user lookup, but you would
normally retrieve these details using a database call. Flask-login
allows full flexibility here.

We subclass the basic Flask-login UserMixin class, which pro‐
vides some sensible defaults. Note that we don’t have to inherit
from UserMixin but would then need to implement some basic
properties or methods (e.g., is_authenticated).

Called after a user submits a login form with the user’s id (here
we’re using a name to identify the user).

Unauthorized users trying to access one of our protected pages will
be sent to the login view. For a standard GET request, this login
method will return a login page, rendered from a template. A POST
request will see the form processed; if the passwords match, the user
will be logged in to the session. Here’s the code for the login route:

@app.route('/login', methods=['GET', 'POST'])
def login():

 if flask.request.method == 'GET':
 return render_template('login.html')

 name = flask.request.form['name']
 # FOR DEMO PURPOSES ONLY:
 # password should never be in plaintext!
 if users.get(name) and\
 flask.request.form['pw'] == users[name]['pw']:
 user = User()
 user.id = name
 # Authenticate the user session
 flask_login.login_user(user)
 return flask.redirect(flask.url_for('root'))

 return '<h2>A Bad Login Attempt</h2>' \
 '<p>Wrong name and/or password given</p>'

520 | Appendix A: Moving from Development to Production

http://bit.ly/1Qccba1

If the request is a GET, then direct the user to our login page;
otherwise, we’ll be processing the contents of the posted login
form.

On logging in the user, we’ll redirect them to the root of our
single-page visualization.

The login POST has failed with incorrect form fields. We’ll
return this placeholder; normally you’d probably return a
proper failed login template with suitable failure warnings.

The login.html template is a simple form with input fields for pass‐
word and name:

<!DOCTYPE html>
<meta charset="utf-8">
<!-- IMPORT THE VISUALIZATIONS CSS STYLING -->
<link rel="stylesheet" href="static/css/style.css">

<style type="text/css" media="screen">
 div#login {text-align: center;}
</style>

<body>
 <div id="login">
 <h2>Login with name and password:</h2>
 <form action='login' method='POST'>
 <input
 type='text' name='name' id='name' placeholder='name'>
 </input>
 <input
 type='password' name='pw' id='pw' placeholder='password'>
 </input>
 <input type='submit' name='submit'></input>
 </form>
 </div>
</body>

To login-protect a route (in this case our Nobel-viz address), we add
Flask-login’s login_required decorator:

@app.route('/')
@flask_login.login_required
def root():
 return render_template('index.html')

Putting all the login elements together means that when you visit the
Nobel-viz for the first time, you will be directed to a login page like

Moving from Development to Production | 521

Figure A-1. Filling in the correct name and password (name: Grou‐
cho; password: swordfish) will redirect you to the visualization.

Figure A-1. A simple Flask-login page

Flask-login is an eminently extensible and fairly unopinionated
login framework. It’s easy to override and customize various stages
of the login process. For example, by default, unauthorized users will
be redirected to the login page. You can specialize this handling by
defining your own unauthorized_handler. Here we follow the
default and redirect to a login page, adding a little debug output
message.

@login_manager.unauthorized_handler
def unauthorized_callback():

 app.logger.debug('An unauthorized user!')
 return redirect('/login')

You can easily customize Flask-login through the set of callbacks
and configuration variables. A nice example of a such tailoring is
found in Miguel Grinberg’s demonstration of OAuth authorization.

Now that you’ve seen how a basic login process works, let’s see how
you would deploy a Flask app on a conventional web server.

Testing Flask Apps
A programming quote from Bruce Eckel sums up how many feel
about the importance of testing:

“If it’s not tested, it’s broken.”

Of course, there is much disagreement about how much testing
should be done and how much time you want to allocate to it. Writ‐
ing testing procedures can be pretty onerous and since writing tests
involves preempting fail points, how do you know you’ve caught
them all? In fact, with a program of any great complexity you proba‐
bly can’t. Nevertheless, testing is a fundamental aspect of modern

522 | Appendix A: Moving from Development to Production

http://bit.ly/1WRONB0
http://bit.ly/1WRONB0
http://bit.ly/1Xuo3GH

4 This is adapted from the example in the Flask docs.

programming and, in the examples to come, we’ll see how you can
write little test procedures to try to catch your code misbehaving.

Testing is becoming an unavoidable aspect of modern programming
and is a best practice for any medium- to large-sized project, partic‐
ularly a collaborative one. Testing is important during development
but, arguably, vital in production. Python’s unittest is a built-in
testing library that provides a basic test framework. There are also
various third-party libraries, such as pytest and nose, that build on
unittest, simplifying the syntax and generally making it easier to
write tests. Let’s see how to use unittest to run some basic tests on
our Flask app. We’ll use the login process we just created as a test
example.4

We’ll put our tests in a test_nbviz.py file in our project’s root direc‐
tory. By convention, test files should begin with test_ (test runners
like py.test require this by default in order to discover a project’s
tests). As the tests get more extensive, it’s sensible to stick them in
their own subdirectory. The first thing we’ll do in the test_nbviz
module is import our nobel_viz Flask app and the unittest
library:

test_nbviz.py
import nobel_viz
import unittest

The unittest library has a number of classes to help structure your
tests. We’ll subclass a TestCase to set up our tests. TestCases take a
setUp and tearDown method, which are called before and after each
test, respectively. These are used to set up a clean test context and
then clean up afterward. So, for example, if you were testing a data‐
base operation, you would initialize a clean test database in setUp
and then drop it in tearDown. For our test, we’ll just use setUp to
provide a test_client from our nobel_viz app. These test clients
provide a handy way to make requests to our app. Here’s the initial
NVizTestCase code:

import nobel_viz
import unittest

class NVIzTestCase(unittest.TestCase):

Moving from Development to Production | 523

http://flask.pocoo.org/docs/0.10/testing/
https://docs.python.org/2/library/unittest.html
http://pytest.org/
https://nose.readthedocs.org/en/latest/

 def setUp(self):
 nobel_viz.app.config['TESTING'] = True
 self.app = nobel_viz.app.test_client()

 def tearDown(self):
 pass

Now let’s write a couple of helper methods to NVizTestCase to use
our freshly set up test_client to make login and logout requests to
the nobel_viz app:

...
 def login(self, name, password):
 return self.app.post('/login', data=dict(
 name=name, pw=password
), follow_redirects=True)

 def logout(self):
 return self.app.get('/logout', follow_redirects=True)

Now we just need add a login+logout test to our test case. Once
again, convention dictates that tests start with test_:

 # TESTS
 def test_login_logout(self):
 # log in with valid name and password
 resp = self.login('groucho', 'swordfish')
 # check we have been redirected to Nobel-viz page
 assert nobel_viz.app.config['APP_TITLE'] in resp.data
 # log out and test for the logout string in the response
 resp = self.logout()
 assert 'Logged Out!' in resp.data
 # log in with invalid name and password
 resp = self.login('chico', 'shark')
 assert 'Bad Login Attempt' in resp.data

If you want to run this test module from the command line, you can
just add a __name__ test to the end of the file to call unittest:

...
if __name__ == '__main__':
 unittest.main()

Running the test file from the project root should then produce a
test output, showing that our login and logout tests have passed:

$ python test_nbviz.py
.
--
Ran 1 test in 0.019s
OK

524 | Appendix A: Moving from Development to Production

While you can run individual test files in this way, it’s sensible to use
a dedicated test runner to do this. These libraries add extra func‐
tionality to the standard Python test suite, including robust test-
discovery mechanisms, which remove a lot of the bookkeeping code
from the test process. My personal fave is pytest, which is one of
the Anaconda packages. Should you wish you install manually, a pip
command will do the job:

$ pip install pytest

With pytest installed you just run it from the project root and it
will automatically search through all subdirectories and files begin‐
ning with test_ looking for unit tests, running any it finds, and pro‐
ducing a status report:

$ py.test
================================= test session starts =========
platform linux2 -- Python 2.7.6, pytest-2.8.7, py-1.4.31, ...
rootdir: /home/kyran/workspace/nobel_viz, inifile:
collected 1 items

test_nbviz.py .

============================== 1 passed in 0.14 seconds =======

On failure of a test, pytest reports are richer than the unittest
standard, providing contextual feedback showing the failure point in
the code. pytest adds a lot of useful function to Python testing and
simplifies a lot of the boilerplate code. I highly recommend using it.

As befits such a big subject, Python testing can get very complex.
But you can do an awful lot with the built-in unittest framework
and extensions such as pytest. I’d recommend taking a few simple
Python functions you’re using and trying to create some succinct,
efficient tests to probe for as many fail points in as few lines of code
as possible. Like most things programming, testing is a craft that is
learned in the doing.

Now let’s have a brief intro to JavaScript testing, a rather more varied
and colorful area.

Testing JavaScript Apps
Unlike Python, JavaScript doesn’t have a built-in testing library, but
it does have an impressive number of third-party ones. In fact, even
for an experienced JavaScripter, the choice can be bewildering. This

Moving from Development to Production | 525

http://pytest.org/latest/
http://docs.continuum.io/anaconda/pkg-docs

problem is compounded by the fact that JavaScript is in flux at the
moment, with the new version (ECMAScript 6) promising much
easier modular testing, while the Node ecosystem (using Node’s
modular, require-based import system) is developing some impres‐
sive dedicated testing libraries (e.g., Tape).

JavaScript also has to deal with the difficulties of testing user inter‐
action on the client browser, which is still something of a black art.
To keep things manageable, this section will deal with a simple
example of testing, using a few of our core Nobel-viz methods. We’ll
use the well-established Jasmine behavior-driven framework.

There are a number of ways to install Jasmine, but the simplest (and
the one we’re using) is to download a zip file of the latest release
from GitHub. Now we’ll create a tests directory and unzip the Jas‐
mine folder in it, giving a folder structure like the following (NBViz‐
Spec.js is the file we’ll be writing our tests to). We also copy the
SpecRunner.html file to our project’s root:

.
├── config.py
...
├── nobel_viz.py
├── SpecRunner.html
...
├── tests
│ ├── jasmine
│ │ ├── lib
│ │ ├── MIT.LICENSE
│ │ ├── spec
│ │ ├── SpecRunner.html
│ │ └── src
│ └── NbvizSpec.js
...

Copied from the unzipped Jasmine folder

Out of the box, Jasmine is configured to deliver the results of any
tests you run to the browser by opening a SpecRunner.html file. This
file calls in some Jasmine JavaScript libraries and some CSS styling.
Let’s copy the default (shown in the file tree) to our project root and
make a few changes to enable us to test the JavaScript methods in
our core Nobel-viz module (nbviz_core.js):

<!-- SpecRunner.html -->
<!DOCTYPE html>
<html>

526 | Appendix A: Moving from Development to Production

https://github.com/substack/tape
http://jasmine.github.io/2.4/introduction.html
http://bit.ly/1tujTC2

<head>
 <meta charset="utf-8">
 <title>Jasmine Spec Runner v2.4.1</title>

 <link rel="shortcut icon" type="image/png"
 href="tests/jasmine/lib/jasmine-2.4.1/jasmine_favicon.png">
 <link rel="stylesheet"
 href="tests/jasmine/lib/jasmine-2.4.1/jasmine.css">

 <script src="tests/jasmine/lib/jasmine-2.4.1/jasmine.js">
 </script>
 <script
 src="tests/jasmine/lib/jasmine-2.4.1/jasmine-html.js">
 </script>
 <script
 src="tests/jasmine/lib/jasmine-2.4.1/boot.js"></script>

 <!-- include source files here... -->
 <!-- OUR MAIN JS LIBS -->
 <script
 src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.16/
 d3.js">
 </script>
 <script
 src="https://cdnjs.cloudflare.com/ajax/libs/topojson/
 1.6.20/topojson.min.js">
 </script>
 <script
 src="https://cdnjs.cloudflare.com/ajax/libs/queue-async/
 1.0.7/queue.min.js">
 </script>
 <script src="static/lib/crossfilter.min.js"></script>
 <!-- OUR JS FILES TO TEST -->
 <script src="static/js/nbviz_core.js"></script>

 <!-- include spec files here... -->
 <!-- OUR TEST SCRIPTS -->
 <script src="tests/NbvizSpec.js"></script>
</head>

<body>
</body>
</html>

We’ve adjusted the hrefs for the CSS files and the src for the
JavaScript files to point them to our local Jasmine library.

With our SpecRunner.html configured, we need to write some tests
to NbvizSpec.js. The structure of Jasmine tests is guided by the prin‐
ciples of behavior-driven development (BDD), an extension of test-

Moving from Development to Production | 527

https://en.wikipedia.org/wiki/Behavior-driven_development

driven development (TDD). Test blocks are written using Jasmine’s
describe method, the first argument of which is a descriptive string.
These describe blocks contain annotated tests written using Jas‐
mine’s it function, which contains one or more expect functions,
each with a test clause.

Let’s first define our describe function to test the core functions of
the Nobel-viz. We’ll also add a little test data to it:

// tests/NbvizSpec.js
describe("Nbviz core functions", function() {
 var testData = [
 {name: 'Albert Einstein', country:'Switzerland',
 sex:'male', category:'Physics'},
 {name: 'Paul Dirac', country:'England',
 sex:'male', category:'Physics'},
 {name: 'Marie Curie', country:'Poland',
 sex:'female', category:'Chemistry'}
];
 var result;

 // ...

For a first test, let’s test our categoryFill method, which takes a
Nobel Prize category and produces a CSS color hex string. We know
that, if the method is working, the Chemistry category should pro‐
duce the pinkish hex color #ff7aad:

// ...
 it('should show correct color for category', function() {
 var col = nbviz.categoryFill('Chemistry');
 expect(col.toString()).toBe('#ff7aad');
 });
// ...

expect is initialized with a value (in this case, the string version
of col), which is then tested by one of its methods—in this case,
an equality (===) check.

Now let’s add a little test of our filterByCountries method, which
takes a list of countries and filters our dataset (testData, in this
case) for winners from those countries. We’ll first call the makeFil
terAndDimensions (see Example 15-8) method with our test data to
create a Crossfilter filter and the category, country, and gender
dimensions we use in the visualization:

// ...
 it('should filter winners by countries', function() {

528 | Appendix A: Moving from Development to Production

 nbviz.makeFilterAndDimensions(testData);

 nbviz.filterByCountries(['Poland']);
 result = nbviz.countryDim.top(Infinity);

 expect(result.length).toBe(1);
 expect(result[0].name).toBe('Marie Curie');

 nbviz.filterByCountries([]);
 result = nbviz.countryDim.top(Infinity);

 expect(result.length).toBe(3);
 expect(result[2]).toEqual(testData[1]);
 });
// ...

Checks that the result of filtering by Poland returns the one Pol‐
ish winner in testData and that her name is Marie Curie.

We reset the filter with an empty list and then check that the
result is the length or our full test dataset.

The crossfilter result should be sorted on country with Paul
Dirac (England) last (index 2). This should be equal to the sec‐
ond object (index 1) in the test data. toEqual is similar to toBe
but does a deep equality check of the two objects. See this
thread for further details.

We would probably write a test for each of our Crossfilter methods
and other significant core methods. For now, let’s run these two
tests. In order to see the result of the two tests, open SpecRun‐
ner.html in a web browser. This should produce something like
Figure A-2 showing that the two tests have succeeded.

Moving from Development to Production | 529

http://stackoverflow.com/questions/22413009/jasmine-javascript-testing-tobe-vs-toequal
http://stackoverflow.com/questions/22413009/jasmine-javascript-testing-tobe-vs-toequal

Figure A-2. Running Jasmine’s SpecRunner.html in a local browser

Jasmine produces useful feedback should one of your tests fail. Let’s
change our winner name check from Marie Curie to another well-
known prize winner:

 expect(result[0].name).toBe('Albert Einstein');

Running the tests now gives Figure A-3, with the name failure and a
stack trace.

Figure A-3. Failing a test with Jasmine

JavaScript has a lot of testing libraries and, as mentioned, when one
starts trying to test interactive elements, things get difficult very
quickly. Extending Jasmine with a good test runner like Karma (a
framework-agnostic runner) would be a good initial step. For testing

530 | Appendix A: Moving from Development to Production

http://karma-runner.github.io/

5 See this article for a detailed reason why Tape might save you a lot of time and stress.

Node.js modules, Tape is a nice, simple library.5 As projects get more
involved, you may want to look at a continuous integration testing
setup like Travis CI (for GitHub-based projects).

Now that we’ve had a little taste of Python and JavaScript testing,
let’s dip our toes in the waters of an equally big subject: deploying a
Flask app to the Web.

Deploying Flask Apps
In development, you are likely running Flask on a port (5000 by
default) of localhost. In production, you’ll probably want to direct
your Flask app through a dedicated server such as Apache or Nginx
(by far the most popular servers, with around two-thirds of the mar‐
ket share). The Web Server Gateway Interface (WSGI) provides a
handy specification for hooking up Python web apps to heavyweight
servers. We’ll now see how Flask makes use of this with the most
popular web server, Apache.

Configuring Apache
With Apache, you’ll need the mod_wsgi module installed (see the
installation instructions).

On a typical Ubuntu-based server, you would use something like
this to install the Apache WSGI module:

$ sudo apt-get install libapache2-mod-wsgi

With the WSGI module installed, the first sensible step is to either
add your app’s root directory to Apache’s default var/www gateway
directory or create a symbolic link to it (e.g., with the Nobel-viz root
at /home/kyran/workspace/nobel_viz). On a Unix or OS X box, you
would create a symbolic link like so, with superuser status:

$ ln -s /home/kyran/workspace/nobel_viz /home /var/www

To use the WSGI module, you need to define a .wsgi file (regardless
of the suffix, a Python module) for your app. This will act as the
Apache initializer for your app, web API, and so on. Place the wsgi
file in your project’s root directory (in our case, nobel_viz):

Moving from Development to Production | 531

http://bit.ly/1UEI5YK
https://github.com/substack/tape
https://travis-ci.org/
https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
http://bit.ly/1Yyr5Ja

/home/kyran/workspace/nobel_viz/nobel_viz.wsgi
import sys
import os
Add our app's directory to the system path
sys.path.insert(0, '/var/www/nobel_viz')

activate_this = '/home/kyran/.virtualenvs/pyjsbook/bin'\
'/activate_this.py'
execfile(activate_this, dict(__file__=activate_this))

os.environ["NBVIZ_CONFIG"] = "config.DevelopmentConfig"

from server import app as application

If using a Python virtual environment (as you should), then you
need to activate it (making its libraries available) using its acti
vate_this module.

Here we pass an environment variable to the app’s environment,
in this case the NBVIZ_CONFIG configuration variable we dis‐
cussed earlier in the appendix.

The Flask app defined in our nobel_viz.py module. The WSGI
module needs it to be imported as application.

With nobel_viz.wsgi written, we need to point Apache to it, using
a standard configuration file added to the /etc/apache2/sites-enabled
directory:

/etc/apache2/sites-enabled/nobel-viz.conf

NameVirtualHost *:80

<VirtualHost *:80>
 ServerName http://nobelviz.com
 WSGIScriptAlias / /var/www/nobel_viz/nobel_viz.wsgi
 <Directory /var/www/nobel_viz/>
 Order allow,deny
 Allow from all
 </Directory>
 ErrorLog ${APACHE_LOG_DIR}/error.log
 LogLevel info
 CustomLog ${APACHE_LOG_DIR}/access.log combined
</VirtualHost>

Assuming our Nobel-viz is running on its own dedicated server
with DNS name.

532 | Appendix A: Moving from Development to Production

The location of our .wsgi configuration file.

With the WSGI module installed and nobel_viz.wsgi and nobel-
viz.conf in place, we need to restart Apache. On a standard Linux-
based server, this is done thusly:

$ sudo service apache2 restart

If you now go to either the address http:localhost or, assuming it is
up and running, http://nobelviz.com, you should find your Flask app
being served by Apache.

Deploying to Nginx servers (the second most popular out there) is
just as easy, using the uWSGI application server. Check out this fine
tutorial for a detailed rundown.

Similar principles to those just outlined should see you up and run‐
ning on the popular production servers. Check the official docs for a
comprehensive rundown.

Logging and Error Handling
Logging is a fundamental part of a production setup and another big
topic that can easily mushroom as projects increase in size. On a few
projects I’ve worked on, a centralized logging setup such as GrayLog
or Logstash has proved useful. It’s great to be able to pool all logging
to one place, and web-based access is another boon.

There’s a nice section in the Flask docs on error handling, which
makes a very sensible point: you will generally only look at a log-file
for application errors when a user reports an error. It’s better prac‐
tice to receive an email alert as soon as an exception occurs. Python
has a handy log handler (SMTPHandler) for just this occasion, based
on the Simple Mail Transfer Protocol (SMTP).

In the following code, we set up a Python SMTP logging handler to
send an email to the Nobel-viz admin if the Flask server throws an
error. You’ll need access to a mail host to do this, and while you
could run one on the same machine as the Flask app (access on
127.0.0.1), you’ll usually want to use an external SMTP mail server,
accessed by username and password.

...
app = Flask(__name__)
#...
ADMINS = ['nvizadmin@kyrandale.com']

Moving from Development to Production | 533

http://nobelviz.com
https://uwsgi-docs.readthedocs.org/en/latest/
http://vladikk.com/2013/09/12/serving-flask-with-nginx-on-ubuntu/
http://vladikk.com/2013/09/12/serving-flask-with-nginx-on-ubuntu/
http://flask.pocoo.org/docs/0.10/deploying/
https://www.graylog.org/
http://logstash.net/
http://flask.pocoo.org/docs/0.10/errorhandling/
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

if not app.debug:
 import logging
 from logging.handlers import SMTPHandler
 mail_handler = SMTPHandler(
 mailhost = ('smtp.foo.com', 495) # mail server, port
 fromaddr = 'server-error@nobelviz.com',
 toaddr = ADMINS,
 subject = 'Your Application Failed'),
 credentials = (app.config.SMTP_USER,\
 app.config.SMTP_PASSWORD)
 mail_handler.setLevel(logging.ERROR)
 app.logger.addHandler(mail_handler)

There are some handy error-handling pointers in the Flask docs.
They build on Python’s already solid built-in logging library, which I
recommend becoming familiar with. At its most basic, it pretty
much replaces the need to use the print statement ever again, out‐
side of providing output to a command-line application. But it has a
fair number of bells and whistles beyond that. The basic logging
tutorial is a good starting point. The logging module is also covered
succinctly in one of Doug Hellman’s Weekly Modules. For a nice
overview of some logging and exception patterns, see this loggly
blog post.

534 | Appendix A: Moving from Development to Production

http://flask.pocoo.org/docs/0.10/errorhandling/
https://docs.python.org/2/library/logging.html
https://docs.python.org/2/howto/logging.html#logging-basic-tutorial
https://docs.python.org/2/howto/logging.html#logging-basic-tutorial
https://pymotw.com/2/logging/
https://www.loggly.com/blog/exceptional-logging-of-exceptions-in-python/
https://www.loggly.com/blog/exceptional-logging-of-exceptions-in-python/

Index

A
acknowledgments, xiii
AJAX, 344-348, 487-490
Anaconda

development setup, 1-4
libraries included in, 3

Apache, 531-533
append method (D3 library), 405
arrays, 29-30
attributions, xi
audience, 361
authentication, 518
axes (D3 library), 427-433, 441

B
Babel.js, 17
bar charts (Matplotlib), 267-272
bar charts, planning for, 367 (see also

D3 library)
basic authentication, 519
BeautifulSoup

basic web scraping with, 145
installing, 145
parsing data with, 146
vs. Scrapy library, 157
selecting tags, 147-156

Bokeh, xx, 276
boolean operators, 28
Bootstrap library, 363
Bostock, Mike, 457

C
CamelCase, 16
categorizing measurements, 204-206
category labels, 442
Chrome/Chromium

downloading, 5
web-developer kit, 86, 91, 100-102

circles, creating in SVG, 109
classes, 35-40
closures, 48-51
code examples, using, xi, xv, 1
code-linting, 89
collections module, 42
command prompt, 91
comments, xii, 25
conditional statements, 34
contact information, xi, xv
content delivery networks (CDN), 5
Continuum Analytics, 1
cross-origin resource sharing

(CORS), 346, 355
Crossfilter library

benefits of, 392
filter creation, 392
overview of, xxviii

CSS (Cascading Style Sheets)
applying to HTML, 97-99,

378-381
applying to SVG, 110
applying with D3 library, 401-404

CSV (comma-separated values) files
creating, 59
loading into DataFrames, 212

535

manipulating, 60
curl, testing APIs with, 341
curly brackets, 24

D
D3 library

bar charts
accessing bound data, 421
adding DOM elements,

404-410
axes/labels, 427-433
data binding, 415
enter method, 417-421
integrating datasets, 410
key components, 400
scales, 410
transitions, 434-438
update pattern, 422-427

benefits of, 399
bio-box visualizations

building the bio-box, 487-490
building the list, 484-487
overview of, 483

map visualizations
adding value indicators,

474-477
available maps, 456
benefits of, 455
building maps, 467-470
completed map, 477-477
d3.geo library, 461-467
data formats, 457-461
tooltips, 478-481
updating maps, 471-474

menu bars
building, 494
HTML element creation, 494
target visualization, 493

overview of, xxvii
recap of, 508
timeline charts

axes, 441
framework for, 439
labels, 442
nested data-join, 446-450
nesting data, 444
ordinal scales, 440
transitions, 450-453

working with selections, 400-404
D3.js, 14
data binding (D3 library)

accessing bound data, 421
axes/labels, 427-433
benefits of, 415
enter method, 417-421
transitions, 434-438
update pattern, 422-427

data cleaning
dealing with times/dates, 247-250
dirty data examples, 225
finding duplicates, 236-239
finding mixed types, 233
full clean_data function, 250
importance of, 223-225
inspecting data, 225-228
merging DataFrames, 252
recap of, 507
removing duplicates, 240-246
removing rows, 235
replacing strings, 233-235
saving cleaned data sets, 251
selecting data in Pandas, 229-233
sorting data, 239-240

data collection
approaches to, 127
from Web APIs, 132-137
parsing data, 146
recap of, 506
requests library for, 127-137
scraping data, 143-145
Scrapy library for, 157-190
selecting tags, 147-156
using libraries, 138-143

data containers, 29-30
data delivery (see also Flask)

dynamic data, 332-336
recap of, 507
selecting delivery method, 336
serving data, 322-327, 374
static files, 327-332, 374

data exploration
age/life expectancy, 308-314
birth vs. current country, 315
discovering stories, 285
environment set up, 286-288
gender disparities, 289-296

536 | Index

integrated plotting, 288
national trends, 296-307

data nesting (D3 library), 444
data processing, compared, 21-23
data sharing

benefits of Python for, 57
CSV file creation, 59
CSV/TSV and row-column for‐

mats, 60-63
date/time handling, 64-66, 82
JSON data, 63
MongoDB, 77-82
SQL databases, 67-77
target list of data objects, 58

data visualization (dataviz)
approach to learning, xv, xxviii
future progress

interactive mapping, 509
machine-learning, 510
social media networks, 509

guiding principle of, ix
history of, xvii
measurement categories in, 204
overview of

basic toolkit, 505
D3 library for, 508
data cleaning, 507
data collection, 506
data delivery, 507

prerequisites to learning, xvi, xix,
xxix

recommended books, xxxii
theory of, xxix
tools presented, ix, xx, xxiii (see

also Matplotlib)
data-join method (D3 library), 423
databases

development setup, 6
loading into DataFrames, 215
MongoDB, 77-82
SQL, 67-77

DataFrames (Pandas)
altering views vs. copies, 241
columns property, 206
creating from Series, 218-221
creating/saving DataFrames, 210
indices, 206, 229-233
inspecting contents, 206

loading CSV data, 212
loading Excel files, 214
loading JSON data, 211
loading MongoDB tables, 216
loading SQL tables, 215
merging, 252
selecting groups (subsets), 209,

229-233
working with rows/columns, 207

Dataset library, 75-77
dataviz toolchain

cleaning/exploring data, 191
delivering data, 319
getting data, 125

(see also data collection)
overview of, xxv
recap of, 505
visualizing data, 359

dates, 64-66, 82, 247-250
development setup

accompanying code, 1
databases, 6
integrated development environ‐

ments, 7
JavaScript, 5-6
Python, 1-4

dicts, 29-30
dimensions, 380, 405
Django, 323
doc-strings, 25
Document Object Model (DOM), 92,

404-410
duplicates

finding, 236-239
removing, 240-246

dynamic data delivery, 332-336

E
elements

appending/inserting, 404
getting dimensions of, 405

Elements tab (Chrome), 100
elif statements, 34
else statements, 34
enter method (D3 library), 417-421
environment variables, adjusting, 3
errata, xii
error handling, 533

Index | 537

Eve RESTful APIs, 340-343, 487-490
eve-sqlalchemy extension, 352
Excel files

loading into DataFrames, 214

F
FacetGrids (Seaborn), 279-282
feature method (TopoJSON), 462
feedback, xv
figures

OOP approach to, 263-266
setting sizes in Matplotlib, 259

file I/O, 34
file organization, 323
files

creating CSV files, 59
filter function, 47
Flask

dynamic data delivery, 332-336
file organization, 323, 372
installing, 324
overview of, xxvii
production environment

configuration, 514-517
deploying apps, 531-533
starting directory, 514
testing apps, 522-525

RESTful API with, 332-336
RESTful data with

adapting plugins for, 339
Ajax API access, 344-348
MongoDB plugin, 340-343
Nobel Prize visualization,

348-353
SQL plugins, 353-357

serving data with, 324
Flask-Restless, RESTful APIs, 339
Folium, 509
for loops, 31-33
frameworks, 88
functional methods

array methods, 45-47
vs. for loops, 31-33

functions, 30

G
<g> element (SVG), 108

geographic information system (GIS),
456

GeoJSON, 457
ggplot library, 276
Gizma, 437
Google spreadsheets, 138-141
graticules (D3 library), 466
grouping/ungrouping elements

(SVG), 118-119

H
HATEEOAS, 342
Hello World!, 21
heterogeneous datasets, 204-206
hierarchy layouts (D3 library), 446
historical trends, 293-296
HTML (Hypertext Markup Lan‐

guage)
conversion to DOM, 92
creating elements with D3, 494
CSS application, 97-99
markup tags, 95-97
web visualization skeleton, 93,

374-378
HTTP (Hypertext Transfer Protocol)

serving web pages with, 92
status codes, 129
verbs, 132-135

I
identity scales (D3 library), 413
if statements, 34
injection attacks, 328
insert method (D3 library), 409
integrated development environ‐

ments (IDEs)
development setup, 7
vs. browser tools, 91

integrated plotting, 288
Intelligent Development Environ‐

ment (IDE), 88
interactive mapping, 509
interpolate method (D3 library), 412
IPython

environment set up, 286-288
interpreter, 13, 91

iteration, 31-33

538 | Index

J
Java, xxi
JavaScript

benefits of, xx
configuring apps, 517-518
development setup, 5-6
including scripts, 17
vs. Python (see language-learning

bridge)
for SVG, 121-122
testing apps, 525-531
for web visualizations, 99, 382-395

JavaScript converters, xx
Jinja2, 325
JSBin, 14
JSON (JavaScript Object Notation)

for data sharing, 63
loading into DataFrames, 211
for web visualizations, 100

L
labels (D3 library), 427-433
lambdas, 47
language-learning bridge

code access, 13
code interaction (JavaScript), 14
code interaction (Python), 13
language differences, 12
language similarities, 12
overview of, 11
practical differences

closures, 48-51
collections, 42
functional array methods,

45-47
lambdas, 47
list comprehensions, 45-47
list enumeration, 41
map, reduce, and filter func‐

tions, 47
method chaining, 41
module pattern, 48-51
this vs. that keywords, 51
tuple unpacking, 42
underscore library, 44

programming basics
boolean operators, 28
CamelCase, 16

classes, 35-40
comments, 25
conditionals, 34
curly brackets, 24
data containers, 29-30
data processing, 21-23
doc-strings, 25
file I/O, 34
functions, 30
Hello World!, 21
iteration, 31-33
module importing, 17-19
namespaces, 19
numeric types, 27
PEP-8, 16
prototypes, 35-40
script inclusion, 17-19
string construction, 23
string quoting, 27
style guidelines, 16
underscores, 16
use strict directive, 16
variables, declaring, 26
whitespace, 24

reference guide/cheat sheet, 51-54
lattice plots, 279
layering elements (SVG), 120
Leaflet, 509
legends, 442
libraries

choosing, xxiv
installing extra, 3
installing locally, 5
smaller supporting libraries, xxviii
using to access Web APIs, 138-143

linear scales (D3 library), 412
lines, creating in SVG, 111
linter, 90
lists

vs. arrays, 29-30
enumerating, 41
list comprehensions, 45-47

log scales (D3 library), 413
logging, 533
lxml, 145

M
machine-learning visualizations, 510

Index | 539

map function, 47
maps, planning for, 365-366, 509
Matplotlib

axes and subplots, 263-266
benefits of, 255
configuring, 259
creating plots in, 255
ggplot library for, 276
interactive plotting, 257-262
labels and legends in, 260
OOP approach to figures, 263-266
overview of, xxvi
plot types

bar charts, 267-272
scatter plots, 272-275

point measurements in, 259
Python-produced visualizations,

xx
saving charts, 262
Seaborn library for, 276-284
setting figure sizes, 259
starting interactive sessions, 256
titles and axes labels in, 261

matrix transformations (SVG), 116
menu bars

building
category selectors, 495
country selectors, 499
gender selectors, 498
metric radio buttons, 503
overview of, 494

HTML element creation, 494
planning for, 363
target visualization, 493

mesh method (TopoJSON), 462
method chaining, 41
modules

importing, 17-19
module pattern, 48-51

MongoDB
accessing, 79
accessing with constants, 78
benefits of, 77, 82
creating collections, 78
documentation, 81
installing, 6
loading into DataFrames, 216
ObjectIds, 80

query expressions, 80
RESTful API with Eve, 340-343

N
namespaces, 19
national trends, 296-307
Nobel Prize visualization

basic skills needed, xxiv
cloning copy of, 1
delivering data to, 348-353
goals of, xv
tools presented, xxv
Wikipedia page for, xxv
working copy of, xv

Notebook (IPython), 286
NumPy (Numeric Python) library

array indexing and slicing, 197
basic operations, 198
benefits of, 193
calculating moving averages, 201
creating array functions, 200
creating arrays, 196
ndarray objects, 194

O
OAuth, 519
objects, 29-30
ordinal scales (D3 library), 414, 440

P
Pairgrids (Seaborn), 282-284
Pandas

altering views vs. copies, 241
benefits of, 203
cleaning data with, 223-253
creating Series, 218-221
creating/saving DataFrames,

210-218
DataFrames, 206-210
development of, 203
exploring data with, 285
groupby method, 289
heterogeneous datasets and,

204-206
integrated plotting in, 288
overview of, xxvi
Panel class, 221

540 | Index

unstacking groups in, 291-292
Panel class (Pandas), 221
paths (D3 library), 465-466
paths (SVG), 114-116
PEP-8, 16
pipelines (Scrapy library)

concept of, 181-183
scraping text and images with,

183-189
specifying with multiple spiders,

189
polygons, creating in SVG, 111
power scales (D3 library), 413
production environment

authentication, 518
configuration, 514-517
deploying Flask apps, 531-533
logging/error handling, 533
moving to from development, 513
starting directory, 514
testing Flask apps, 522-525
testing JavaScript apps, 525-531

projections (D3 library), 463-465
prototypes, 35-40
PyCharm, 8
PyDev, 8
Python

benefits of, xx
consuming data from Web APIs

with, 132-137
development setup, 1-4
drawbacks of, xx
Gspread library, 138-141
IDEs for, 7
improvements to, xxii
vs. JavaScript (see language-

learning bridge)
reading/writing data with (see

data sharing)
requests library, 127-137
Scrapy library for, 157-190
Tweepy library, 141-143
version 2 vs. version 3, 2
web scraping tools, 145

Python-to-JavaScript conversion, xx

Q
Qt console (IPython), 286

quantitative scales, 411-413
quantize/quantile scales (D3 library),

413

R
R, xxi
rectangles, creating in SVG, 111
reduce function, 47
requests library

benefits of, 127
downloading/installing, 128
getting data files with, 128-131
overview of, xxviii
RESTful Web APIs and, 133-137
web scraping with, 145

responsive web design (RWD), 363
REST (Representational State Trans‐

fer), 132, 332-336
rotating (SVG), 116
row-column file format, 60

S
sandboxing, 4
scales (D3 library)

benefits of, 410
categories of, 411
ordinal scales, 414, 440
quantitative scales, 411-413

scaling (SVG), 116
scatter plots (Matplotlib), 272-275
SciPy (Sciency Python) library

benefits of, 193
Seaborn library and, 276

scraping data (see web scraping)
Scrapy library

vs. BeautifulSoup, 157
benefits and drawbacks of, 157
caching web pages, 176
establishing targets, 160
overview of, xxv
pipelines in, 181-183
Scrapy shell, 162-166
selecting with relative xpaths, 166
setting up, 159
spider production, 167-173
targeting HTML with xpaths, 161
yielding requests, 177-181

Index | 541

scripts, including, 17-19
Seaborn library

benefits of, 276
FacetGrids in, 279-282
overview of, xxviii
Pairgrids, 282-284
working with, 276-278

selections (D3 library), 400-404
self variable, 38
Series (Pandas), 218-221
Shapefile, 456
SimpleHTTPServer, 322
single-line servers, 322
single-page applications (SPAs), 86
size, 364, 378, 405
skewing (SVG), 116
SOAP (Simple Object Access Proto‐

col), 132
social media networks, 509
Sources tab (Chrome), 101
SPA (single-page applications), 322
spiders (Scrapy)

producing, 167-173
specifying multiple, 189

SQLAlchemy
adding instances, 70
benefits of, 67
database engine creation, 67
database table definition, 68
Dataset module, 75-77
loading into DataFrames, 215
overview of, xxviii
queries, 72-75

SQLite
installing, 6
loading into DataFrames, 215

static file delivery, 327-332, 374
Statsmodels library, 276
stories, discovering, 286
strings

constructing, 23
quoting, 27
replacing, 233-235

style guidelines, 16
supplemental material, obtaining, xi
SVG (Scalable Vector Graphics)

<g> elements, 108
circles, 109

CSS application, 110
geometric operations on, 116
grouping/ungrouping elements,

118-119
JavaScripted SVG, 121-122
layering/transparency, 120
lines, rectangle, and polygons, 111
paths, 114-116
providing SVG frames, 405
resurgence of, 107
svg elements, 108
text handling in, 112-113
for web page contents, 106

switch statements, 34
system files, 59

T
Tableau, xxii
Terminal (xterm), 91
text

SVG vs. rasterized canvas context,
112-113

text editors, selecting, 89
'that', as proxy for JS this, 51
this keyword, 38, 51
timeline charts

axes, 441
framework for, 439
labels, 442
nested data-join, 446-450
nesting data, 444
ordinal scales, 440
transitions, 450-453

times, 64-66, 82, 247-250
TopoJSON, 456, 459-461
transitions (D3 library), 434-438
translating (SVG), 116
transparency (SVG), 120
trellis plots, 279
TSV (tab-separated value) files, 60
tuples, unpacking, 42
Twitter API, 141-143
typographical conventions, x

U
underscore library, 44
underscores, 16

542 | Index

update pattern (D3 library), 422-427
URL globbing parsers, 342
use strict directive, 16

V
variables, declaring, 26
virtual environments, 4
visualization implementation

core components, 372
CSS styling, 378-381
file organization, 372
HTML skeleton for, 374-378
JavaScript engine

basic data flow, 384
benefits of modularity, 382
core code, 385
data-driven updates, 390
filtering data, 392
importing scripts, 382
initialization, 387
ready function, 388

recap of, 507
running the app, 396
serving data, 374

visualization planning
audience, 361
bar charts, 367
biography and photo, 368 (see

also D3 library)
complete visualization, 369
list of winners, 367
maps, 365-366
menu bars, 363
recap of, 507
size and colors, 364
visual element selection, 362

W
Web APIs

consuming data from, 132-137
types of, 132
using libraries to access, 138-143

web development
adding content, 106
basic pages, 103-105
building web pages, 91-100

challenges of, xviii
Chrome's Developer Tools,

100-102
divide from programming, xvi
overview of, 85
SPAs, 86
SVG for, 107-122
tools required, 86-91

web scraping
basics of, 145
benefits of, 143
caching web pages, 152
parsing data, 146
purpose of, 144
Scrapy library for, 157-190
selecting tags, 147
selection patterns, 149-152
tools for, 145

web visualizations (see also visualiza‐
tion implementation; visualization
planning)
adding content, 106
basic pages, 103-105
content markup, 95-97
CSS application, 97-99, 378-381
data formats, 99
DOM manipulations, 92
elements of, 91
HTML skeleton for, 93, 374-378
JavaScript for, 99
serving pages with HTTP, 92

whitespace, 24
WingIDE, 8
wrapper libraries

Google spreadsheets, 138-141
Twitter, 141-143

WSGI (Web Server Gateway Inter‐
face), 531-533

X
XML-RPC APIs, 132
xpaths

selecting with relative, 166
targeting HTML with, 161
testing with Scrapy shell, 162-166

xterm (Terminal), 91

Index | 543

About the Author
Kyran Dale is a journeyman programmer, ex–research scientist, rec‐
reational hacker, independent researcher, occasional entrepreneur,
cross-country runner, and improving jazz pianist. During 15-odd
years as a research scientist, he hacked a lot of code, learned a lot of
libraries, and settled on some favorite tools. These days he finds
Python, JavaScript, and a little C++ go a long way to solving most
problems out there. He specializes in fast prototyping and feasibility
studies with an algorithmic bent but is happy to just build cool
things.

Colophon
The animals on the cover of Data Visualization with Python and
JavaScript are the blue-banded bee (Amegilla cingulata), the orchid
bee (of the Euglossini tribe), and the blue carpenter bee (Xylocopa
caerulea). Bees are crucial to agriculture, as they pollinate crops and
other flowering plants while they collect pollen and nectar.

The blue-banded bee is native to Australia, in all kinds of habitats
including woodlands, heath, and even urban areas. As its Latin
name suggests, its distinctive physical feature is the iridescent blue
bands on its abdomen: males have five, while females have four.
These bees practice what is known as “buzz pollination,” meaning
they use vibration to shake pollen loose. This species can vibrate a
flower at an astonishing 350 times per second. Many plants, includ‐
ing tomatoes, are pollinated most efficiently in this manner.

The orchid bee is a colorful insect found in the rainforests of Central
and South America. They have shiny metallic coloration in vivid
shades of green, blue, gold, purple, and red. They are not as hairy as
most bee species, and have long tongues almost twice the length of
their body. Male orchid bees have specialized legs with small hollows
that collect and store fragrant compounds, which are then released
at a later time (perhaps in a mating display). Several orchid species
hide their pollen in a particular spot marked with a scent the male
orchid bee is attracted to, thus relying solely on this species for
pollination.

The blue carpenter bee is a large insect (on average, 0.91 inches
long) covered in light blue hair. It is widely distributed in Southeast

Asia, India, and China. They are so named because nearly all species
nest within dead wood, bamboo, or timbers of manmade structures.
They bore holes by vibrating their bodies and scraping their mandi‐
bles against the wood (however, carpenter bees feed on nectar; the
wood they bore through is discarded). They are solitary and so do
not form large colonies, but it is possible for several individuals to
build nests in the same area.

Many of the animals on O’Reilly covers are endangered; all of them
are important to the world. To learn more about how you can help,
go to animals.oreilly.com.

The cover image is from Insects Abroad. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro;
the heading font is Adobe Myriad Condensed; and the code font is
Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Introduction
	Who This Book Is For
	Minimal Requirements to Use This Book

	Why Python and JavaScript?
	Why Not Python on the Browser?
	Why Python for Data Processing
	Python’s Getting Better All the Time

	What You’ll Learn
	The Choice of Libraries
	Preliminaries

	The Dataviz Toolchain
	1. Scraping Data with Scrapy
	2. Cleaning Data with Pandas
	3. Exploring Data with Pandas and Matplotlib
	4. Delivering Your Data with Flask
	5. Transforming Data into Interactive Visualizations with D3
	Smaller Libraries

	Using the Book
	A Little Bit of Context
	Summary
	Recommended Books

	Chapter 1. Development Setup
	The Accompanying Code
	Python
	Anaconda
	Checking the Anaconda Install
	Installing Extra Libraries
	Virtual Environments

	JavaScript
	Content Delivery Networks
	Installing Libraries Locally

	Databases
	Installing MongoDB

	Integrated Development Environments
	Summary

	Part I. Basic Toolkit
	Chapter 2. A Language-Learning Bridge Between Python and JavaScript
	Similarities and Differences
	Interacting with the Code
	Python
	JavaScript

	Basic Bridge Work
	Style Guidelines, PEP 8, and use strict
	CamelCase Versus Underscore
	Importing Modules, Including Scripts
	Keeping Your Namespaces Clean
	Outputting “Hello World!”
	Simple Data Processing
	String Construction
	Significant Whitespace Versus Curly Brackets
	Comments and doc-strings
	Declaring Variables, var
	Strings and Numbers
	Booleans
	Data Containers: Dicts, Objects, Lists, Arrays
	Functions
	Iterating: for Loops and Functional Alternatives
	Conditionals: if, else, elif, switch
	File Input and Output
	Classes and Prototypes

	Differences in Practice
	Method Chaining
	Enumerating a List
	Tuple Unpacking
	Collections
	Underscore
	Functional Array Methods and List Comprehensions
	Map, Reduce, and Filter with Python’s Lambdas
	JavaScript Closures and the Module Pattern
	This Is That

	A Cheat Sheet
	Summary

	Chapter 3. Reading and Writing Data with Python
	Easy Does It
	Passing Data Around
	Working with System Files
	CSV, TSV, and Row-Column Data Formats
	JSON
	Dealing with Dates and Times

	SQL
	Creating the Database Engine
	Defining the Database Tables
	Adding Instances with a Session
	Querying the Database
	Easier SQL with Dataset

	MongoDB
	Dealing with Dates, Times, and Complex Data
	Summary

	Chapter 4. Webdev 101
	The Big Picture
	Single-Page Apps
	Tooling Up
	The Myth of IDEs, Frameworks, and Tools
	A Text-Editing Workhorse
	Browser with Development Tools
	Terminal or Command Prompt

	Building a Web Page
	Serving Pages with HTTP
	The DOM
	The HTML Skeleton
	Marking Up Content
	CSS
	JavaScript
	Data

	Chrome’s Developer Tools
	The Elements Tab
	The Sources Tab
	Other Tools

	A Basic Page with Placeholders
	Filling the Placeholders with Content

	Scalable Vector Graphics
	The <svg> Element
	The <g> Element
	Circles
	Applying CSS Styles
	Lines, Rectangles, and Polygons
	Text
	Paths
	Scaling and Rotating
	Working with Groups
	Layering and Transparency
	JavaScripted SVG

	Summary

	Part II. Getting Your Data
	Chapter 5. Getting Data off the Web with Python
	Getting Web Data with the requests Library
	Getting Data Files with requests
	Using Python to Consume Data from a Web API
	Using a RESTful Web API with requests
	Getting Country Data for the Nobel Dataviz

	Using Libraries to Access Web APIs
	Using Google Spreadsheets
	Using the Twitter API with Tweepy

	Scraping Data
	Why We Need to Scrape
	BeautifulSoup and lxml
	A First Scraping Foray

	Getting the Soup
	Selecting Tags
	Crafting Selection Patterns
	Caching the Web Pages
	Scraping the Winners’ Nationalities

	Summary

	Chapter 6. Heavyweight Scraping with Scrapy
	Setting Up Scrapy
	Establishing the Targets
	Targeting HTML with Xpaths
	Testing Xpaths with the Scrapy Shell
	Selecting with Relative Xpaths

	A First Scrapy Spider
	Scraping the Individual Biography Pages
	Chaining Requests and Yielding Data
	Caching Pages
	Yielding Requests

	Scrapy Pipelines
	Scraping Text and Images with a Pipeline
	Specifying Pipelines with Multiple Spiders

	Summary

	Part III. Cleaning and Exploring Data with Pandas
	Chapter 7. Introduction to NumPy
	The NumPy Array
	Creating Arrays
	Array Indexing and Slicing
	A Few Basic Operations

	Creating Array Functions
	Calculating a Moving Average

	Summary

	Chapter 8. Introduction to Pandas
	Why Pandas Is Tailor-Made for Dataviz
	Why Pandas Was Developed
	Heterogeneous Data and Categorizing Measurements
	The DataFrame
	Indices
	Rows and Columns
	Selecting Groups

	Creating and Saving DataFrames
	JSON
	CSV
	Excel Files
	SQL
	MongoDB

	Series into DataFrames
	Panels
	Summary

	Chapter 9. Cleaning Data with Pandas
	Coming Clean About Dirty Data
	Inspecting the Data
	Indices and Pandas Data Selection
	Selecting Multiple Rows

	Cleaning the Data
	Finding Mixed Types
	Replacing Strings
	Removing Rows
	Finding Duplicates
	Sorting Data
	Removing Duplicates
	Dealing with Missing Fields
	Dealing with Times and Dates

	The Full clean_data Function
	Saving the Cleaned Dataset
	Merging DataFrames

	Summary

	Chapter 10. Visualizing Data with Matplotlib
	Pyplot and Object-Oriented Matplotlib
	Starting an Interactive Session
	Interactive Plotting with Pyplot’s Global State
	Configuring Matplotlib
	Setting the Figure’s Size
	Points, Not Pixels
	Labels and Legends
	Titles and Axes Labels
	Saving Your Charts

	Figures and Object-Oriented Matplotlib
	Axes and Subplots

	Plot Types
	Bar Charts
	Scatter Plots

	Seaborn
	FacetGrids
	Pairgrids

	Summary

	Chapter 11. Exploring Data with Pandas
	Starting to Explore
	Plotting with Pandas
	Gender Disparities
	Unstacking Groups
	Historical Trends

	National Trends
	Prize Winners per Capita
	Prizes by Category
	Historical Trends in Prize Distribution

	Age and Life Expectancy of Winners
	Age at Time of Award
	Life Expectancy of Winners
	Increasing Life Expectancies over Time

	The Nobel Diaspora
	Summary

	Part IV. Delivering the Data
	Chapter 12. Delivering the Data
	Serving the Data
	Organizing Your Flask Files
	Serving Data with Flask

	Delivering Static Files
	Dynamic Data with Flask
	A Simple RESTful API with Flask

	Using Static or Dynamic Delivery
	Summary

	Chapter 13. RESTful Data with Flask
	A RESTful, MongoDB API with Eve
	Using AJAX to Access the API

	Delivering Data to the Nobel Prize Visualization
	RESTful SQL with Flask-Restless
	Creating the API
	Adding CORS Support
	Querying the API

	Summary

	Part V. Visualizing Your Data with D3
	Chapter 14. Imagining a Nobel Visualization
	Who Is It For?
	Choosing Visual Elements
	Menu Bar
	Prizes by Year
	A Map Showing Selected Nobel Countries
	A Bar Chart Showing Number of Winners by Country
	A List of the Selected Winners
	A Mini-Biography Box with Picture

	The Complete Visualization
	Summary

	Chapter 15. Building a Visualization
	Preliminaries
	Core Components
	Organizing Your Files
	Serving the Data

	The HTML Skeleton
	CSS Styling
	The JavaScript Engine
	Importing the Scripts
	Basic Data Flow
	The Core Code
	Initializing the Nobel Prize Visualization
	Ready to Go
	Data-Driven Updates
	Filtering Data with Crossfilter

	Running the Nobel Prize Visualization App
	Summary

	Chapter 16. Introducing D3—The Story of a Bar Chart
	Framing the Problem
	Working with Selections
	Adding DOM Elements
	Leveraging D3
	Measuring Up with D3’s Scales
	Quantitative Scales
	Ordinal Scales

	Unleashing the Power of D3 with Data Binding
	The enter Method
	Accessing the Bound Data
	The Update Pattern
	Axes and Labels
	Transitions
	Summary

	Chapter 17. Visualizing Individual Prizes
	Building the Framework
	Scales
	Axes
	Category Labels
	Nesting the Data
	Adding the Winners with a Nested Data-Join
	A Little Transitional Sparkle
	Summary

	Chapter 18. Mapping with D3
	Available Maps
	D3’s Mapping Data Formats
	GeoJSON
	TopoJSON
	Converting Maps to TopoJSON

	D3 Geo, Projections, and Paths
	Projections
	Paths
	Graticules

	Putting the Elements Together
	Updating the Map
	Adding Value Indicators
	Our Completed Map
	Building a Simple Tooltip
	Summary

	Chapter 19. Visualizing Individual Winners
	Building the List
	Building the Bio-Box
	Summary

	Chapter 20. The Menu Bar
	Creating HTML Elements with D3
	Building the Menu Bar
	Building the Category Selector
	Adding the Gender Selector
	Adding the Country Selector
	Wiring Up the Metric Radio Button

	Summary

	Chapter 21. Conclusion
	Recap
	Part I, Basic Toolkit
	Part II, Getting Your Data
	Part III, Cleaning and Exploring Data with Pandas
	Part IV, Delivering the Data
	Part V, Visualizing Your Data with D3

	Future Progress
	Visualizing Social Media Networks
	Interactive Mapping with Leaflet and Folium
	Machine-Learning Visualizations

	Final Thoughts

	Appendix A. Moving from Development to Production
	The Starting Directory
	Configuration
	Configuring Flask
	Configuring the JavaScript App

	Authentication
	Testing Flask Apps
	Testing JavaScript Apps
	Deploying Flask Apps
	Configuring Apache

	Logging and Error Handling

	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

